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Abstract

The choice network revenue management model incorporates customer purchase behavior
as a function of the offered products, and is the appropriate model for airline and hotel net-
work revenue management, dynamic sales of bundles, and dynamic assortment optimization.
The optimization problem is a stochastic dynamic program and is intractable. A certainty-
equivalence relaxation of the dynamic program, called the choice deterministic linear program
(CDLP ) is usually used to generate dyamic controls. Recently, a compact linear programming
formulation of this linear program was given for the multi-segment multinomial-logit (MNL)
model of customer choice with non-overlapping consideration sets. Our objective is to obtain
a tighter bound than this formulation while retaining the appealing properties of a compact
linear programming representation. To this end, it is natural to consider the affine relaxation
of the dynamic program. We first show that the affine relaxation is NP-complete even for a
single-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a new
compact linear program that approximates the dynamic programming value function better
than CDLP , provably between the CDLP value and the affine relaxation, and often coming
close to the latter in our numerical experiments. When the segment consideration sets overlap,
we show that some strong equalities called product cuts developed for the CDLP remain valid
for our new formulation. Finally we perform extensive numerical comparisons on the various
bounds to evaluate their performance.

1 Introduction and literature review

Revenue management is the control of the sale of a limited quantity of a resource (hotel rooms for a
night, airline seats, advertising slots etc.) to a heterogenous population with different valuations for
a unit of the resource. The resource is perishable, and for simplicity sake, we assume that it perishes
at a fixed point of time in the future. Sale is online, and the firm has to decide what products to
offer (at a given price for each product), the tradeoff being selling too much at too low a price early
and running out of capacity, or, rejecting too many low-valuation customers and ending up with
excess unsold inventory.
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In industries such as hotels, advertising and airlines, the products consume bundles of different
resources (multi-night stays, multi-leg itineraries) and the decision to accept or reject a particular
product at a certain price depends on the future demands and revenues for all the resources used
by the product and indirectly, on all the resources in the network. Network revenue management
(network RM) is control based on the demands for the entire network. Chapter 3 of Talluri and van
Ryzin [15] contains all the necessary background on network RM.

RM incorporating more realistic models of customer behavior as customers choosing from set
of offered products have recently become popular, initiated in Talluri and van Ryzin [14] for the
single-resource problem. Bodea, Ferguson, and Garrow [2] for instance use choice data from a large
hotel chain and empirically study the suitability of choice models.

The choice network RM problem can be formulated as a dynamic program with exponentially
large state and action spaces. Since the dynamic programming formulation is computationally in-
tractable, many approximation methods have been proposed starting with Gallego, Iyengar, Phillips,
and Dubey [4] and Liu and van Ryzin [7], who formulate the choice deterministic linear program
(CDLP ). They show CDLP gives an upper bound on the value function. Since CDLP has an
exponential number of decision variables it has to be solved using column generation. The column
generation procedure turns out to be tractable for the MNL model of choice when the consideration
sets of the different customer segments are disjoint ([7]). However, generating the columns is difficult
(NP-complete) when the segment consideration sets overlap under the MNL model with just two
segments ([3], [11]).

Given the difficulty of solving CDLP , Talluri [13] explores a weaker segment-based deterministic
concave program (SDCP ) formulation. The SDCP formulation is further strengthened by adding
equalities called product-cuts in Meissner, Strauss, and Talluri [9]. Strauss and Talluri [12] show that
SDCP with the product-cuts added is equivalent to CDLP when the consideration set intersections
have a tree structure.

Kunnumkal and Topaloglu [6] and Zhang and Adelman [17] study decomposition procedures and
an affine relaxation of the dynamic program. In the same vein, Meissner and Strauss [8] look at
time-sensitive bid-price controls based on a decomposition procedure. All these methods yield upper
bounds on the value function that are provably tighter than the CDLP upper bound. However they
are not easy to solve, even for a single-segment MNL model of choice.

Recently, Gallego, Ratliff, and Shebalov [5] give a new compact formulation of CDLP called the
sales-based linear program (SBLP ) for the case of MNL with non-overlapping segment considera-
tion sets. This formulation is very appealing as it is compact—not requiring column or constraint
generation—and hence scalable to industrial-size problems.

Can we obtain a tighter bound than (SBLP ) while maintaining a compact formulation? To this
end, it is natural to consider the affine relaxation of the dynamic program. Unfortunately, we show
that the affine relaxation is NP-complete even for a single segment MNL model, possibly marking
the limit of tractability of dynamic programming approximations. Nevertheless, by analyzing the
affine relaxation we derive a new linear-programming formulation that yields an upper bound on
the dynamic programming value function and is provably tighter than the CDLP bound. Although
theoretically weaker than the affine relaxation, we find in our numerical study, that our relaxation is
often close to the affine relaxation upper bound. Moreover, for the MNL model, our formulation is
compact and similar to the one discovered in [5]. Next, when the segment consideration sets overlap,
we show that the strong constraints called product cuts developed for the CDLP in Meissner et al.
[9] remain valid for our new formulation.
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The remainder of the paper is organized as follows: In §2 we describe the network choice RM
model, the notation, and the basic dynamic program. In §3 we state the CDLP and the affine
relaxation of the dynamic program and show that the affine relaxation is NP-complete to solve
even for a single-segment MNL model. Recently Vossen and Zhang [16] give an equivalent, reduced
formulation of the affine relaxation using Dantzig-Wolfe decomposition ideas. We first give a simpler,
alternative proof of the same result. We then propose compact linear programming formulations in §4
that fall in between CDLP and the affine relaxation for the MNL model with disjoint consideration
sets. §6 discusses a tightening of the formulation when segment consideration sets overlap. §7
contains our computational study using the new formulations.

2 Model and notation

A product is a specification of a price and the set of resources that it consumes. For example,
a product could be an itinerary-fare class combination for an airline network, where an itinerary
is a combination of flight legs; in a hotel network, a product would be a multi-night stay for a
particular room type at a certain price point. Time is discrete and assumed to consist of τ intervals,
indexed by t. The booking horizon begins at time t = 1 and ends at t = τ ; all the resources perish
instantaneously at time τ + 1. We make the standard assumption that the time intervals are fine
enough so that the probability of more than one customer arriving in any single time period is
negligible. The underlying network has m resources (indexed by i) and n products (indexed by j),
and we refer to the set of all resources as I and the set of all products as J . A product j uses a subset
of resources, and is identified (possibly) with a set of sale restrictions or features and a revenue of
fj . A resource i is said to be in product j (i ∈ j) if j uses resource i.

Throughout, we index resources by i, products by j, and time periods by t. We simplify the
notation significantly by making this consistent; for instance if j uses resource i, we represent it as
i ∈ j, and all j that use resource i by {j | j ∋ i}. We use this notation instead of the somewhat
more cumbersome, albeit a bit more precise, option of defining Ij ⊆ I as the set of resources used
by product j and Ji ⊆ J as the set of products that use resource i and then writing i ∈ Ij and
j ∈ Ji.

The resources used by j are represented by aij = 1 if i ∈ j, and aij = 0 if i /∈ j, or alternately
with the 0-1 incidence vector Aj of product j. Let A denote the resource-product incidence matrix;
columns of A are then Aj .

We use superscripts on vectors to index the vectors (for example, the resource capacity vector
associated with time period t would be rt) and subscripts to indicate components (for example, the
capacity on resource i in time period t would be rti). We use 1[·] as the indicator function, 1 if true
and 0 if false.

We let r1 = [r1i ] represent the initial capacity on the resources and rt = [rti ] denote the remaining
capacity on resource i at beginning of time period t. The remaining capacity rti takes values in the
set Ri = {0, . . . , r1i } and R =

∏
iRi represents the state space.

2.1 Demand model

We assume there are L = {1, . . . , L} customer segments, each with distinct purchase behavior. In
each period a customer arrives with a rate λ and that customer belongs to segment l with probability
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λl. So the total arrival rate λ =
∑L
l=1 λl.

Each segment l has a consideration set Cl ⊆ J of products that it considers for purchase. We
assume this consideration set is known to the firm (by a previous process of estimation and analy-
sis). A segment-l customer is indifferent to a product outside his consideration set; i.e., his choice
probabilities are not affected by products offered not in the consideration set.

In each period the firm offers a subset S of its products for sale, called the offer set. Given an
offer set S, an arriving customer purchases a product j in the set S or decides not to purchase. The
no-purchase option is indexed by 0 and is always present for the customer.

A segment-l customer purchases j ∈ S with given probability P lj(S). This is a set-function
defined on all subsets of J . For the moment we assume these set functions are given by an oracle;
it could conceivably be given by a simple formula such as the Multinomial Logit (MNL) model. If
Sl = Cl ∩ S note that P lj(S) = P lj(Sl). We define the vector P l(S) = [P l1(Sl), . . . , P

l
n(Sl)] (recall the

no-purchase option is indexed by 0, so it is not included in this vector).

Given a customer arrival, and an offer set S, the probability that the firm sells j ∈ S is then given
by Pj(S) =

∑
l λlP

l
j(Sl) and makes no sale with probability P0(S) = 1 −

∑
j∈S Pj(S). We define

the vector P (S) = [P1(S), . . . , Pn(S)]. Notice that P (S) =
∑
l λlP

l(S). We define the vectors
Ql(S) = AP l(S) and Q(S) = AP (S). Ql(S) represents the expected capacity consumed on the
resources when set S is offered conditional on a segment-l customer arrival, while Q(S) represents
the expected capacity consumed over all arrivals when set S is offered. The revenue functions can
be written as Rl(S) =

∑
j∈Sl

fjP
l
j(Sl) and R(S) =

∑
j∈S fjPj(S).

For brevity of notation, we write i ∈ S or S ∋ i whenever there is a j ∈ S with i ∈ j.

2.2 Multiple segment MNL model with non-overlapping consideration
sets

Some of the results apply to general discrete-choice models, but the main formulation applies to the
MNL model of choice with multiple segments and non-overlapping consideration sets.1

In this model, the L segments have considerations sets that do not overlap (Cl ∩ Cl′ = ∅, l ̸= l′).
A customer in segment l (the firm does not observe segment membership), when a subset Sl ⊆ Cl of
products are offered by the firm, chooses product j ∈ Sl with probability

P lj(Sl) =
wlj

1 +
∑
k∈Sl

wlk
,

where wlj is a weight associated with product j. This weight represents the exponential of a utility
the customer derives from j as a function of some attributes of the product (such as price etc.). As
we fix all the attributes and our decision is on subsets to offer, we do not delve too much into how
the weights are formed. We refer the reader to Ben-Akiva and Lerman [1] for background on this
popular model.

In our choice model, the no-purchase option is indexed 0, and we normalize the weights so that
the no-purchase weight is 1.0. So if Sl is offered, a customer does not purchase any of the offered
products and leaves the system with a probability P l0(Sl) =

1
1+

∑
k∈Sl

wl
k

.

1The formulation in fact extends unchanged to the slightly more general attraction model of Gallego et al. [5].
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2.3 Choice dynamic program

The dynamic program (DP) to determine optimal controls can be written down as follows. Let
Vt(r

t) denote the maximum expected revenue to go, given remaining capacity rt at the beginning
of period t. Then Vt(r

t) must satisfy the Bellman equation

Vt(r
t) = max

S⊆S(rt)

∑
j∈S

λPj(S)
[
fj + Vt+1(r

t −Aj)
]
+
[
λP0(S) + 1− λ

]
Vt+1(r

t)

 , (1)

where
S(r) = {j|aij ≤ ri∀i}

represents the set of products that can be offered given the capacity vector r. The boundary
conditions are Vτ+1(r) = Vt(0) = 0 for all r and for all t, where 0 is a vector of all zeroes.
V DP = V1(r

1) denotes the optimal expected total revenue over the booking horizon, given the
initial capacity vector r1.

2.4 Linear programming formulation of the dynamic program

The value functions can, alternatively, be obtained by solving a linear program; Zhang and Adelman
[17]. The linear programming formulation of the network choice RM DP given below, has a decision
variable for each state vector in each period Vt(r) and is as follows:

V DP = min
V

V1(r
1)

s.t.

(DP ) Vt(r) ≥
∑
j

λPj(S)[fj + Vt+1(r −Aj)− Vt+1(r)] + Vt+1(r)

∀r ∈ R, S ⊂ S(r), t,

with the boundary condition that Vτ+1(·) = 0. Both the dynamic program (1) and linear program
DP are computationally intractable, but the linear program DP turns out to be useful in developing
value function approximation methods. In the next section, we describe methods to approximate
the value function.

3 Approximations and upper bounds

In the following, we outline the two approximations studied in this paper. We first describe the
choice deterministic linear program and then outline the affine relaxation method.
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3.1 Choice deterministic linear program (CDLP ) and its compact formu-
lation for MNL

The choice deterministic linear program (CDLP ) proposed in Gallego et al. [4] and Liu and van
Ryzin [7] is a certainty-equivalence approximation to (1) and is given by the following linear program:

V CDLP = max
h

∑
S⊆J

λR(S)hS

s.t.
∑
S⊆J

λhSQ(S) ≤ r1

(CDLP )
∑
S⊆J

hS = τ

0 ≤ hS , ∀S ⊆ J.

The decision variables hS can be interpreted as the number of time periods each set is offered
(including the empty set). Liu and van Ryzin [7] show that the optimal objective function value of
CDLP , V CDLP is an upper bound on V DP . Since CDLP has 2n decision variables, it has to be
solved using column generation. Liu and van Ryzin [7] show that the column generation procedure
can be efficiently carried out when choice is according to the MNL model and the consideration sets
of the different segments do not overlap. Bront et al. [3] and Rusmevichientong et al. [11] investigate
this further and show that column generation is NP-complete whenever the consideration sets for
the segments overlap, for the MNL choice model with just two segments.

Compact formulation

Gallego et al. [5] give the following equivalent formulation of CDLP for MNL with non-overlapping
consideration sets:

V SBLP = max
x

L∑
l=1

∑
j∈Cl

fjx
l
j (2)

s.t.
L∑
l=1

∑
j∈Cl

Ajxlj ≤ r1 (3)

(SBLP ) xl0 +
∑
j∈Cl

xlj = λlτ ∀l

xlj
wlj

− xl0 ≤ 0 ∀l, ∀j ∈ Cl

xlj ≥ 0.

In the above linear program, the decision variables xlj can be viewed as the rate of sales of product
j to segment l. Note also that we assumed homogenous arrival rates; if the λl change by period t,
we have to expand the formulation to use time-specific sales rates.

This formulation, referred to as the sales-based linear program (SBLP ), vastly reduces the
complexity of solving CDLP , albeit restricted to the MNL model and disjoint consideration sets.
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3.2 Affine relaxation

The second approximation method we consider is the affine relaxation, where a functional form (in
this case affine) is substituted for the value function variables in the formulation (2) as follows:

Vt(r) = θt +
∑
i

Vitri.

The affine relaxation LP then becomes

V AF = min
θ,V

θ1 +
∑
i

Vi1r
1
i

s.t.

(AF ) θt +
∑
i

Vitri ≥
∑
j

λPj(S)[fj −
∑
i∈j

Vi,t+1] + θt+1 +
∑
i

Vi,t+1ri (4)

∀r ∈ R, S ⊂ S(r), t,
θt ≥ 0, Vit ≥ 0,

with the boundary conditions θτ+1 = 0, Vi,τ+1 = 0. Zhang and Adelman [17] show that the optimal
objective function value V AF is an upper bound on V DP and that there exists an optimal solution
(θ̂, V̂ ) of AF that satisfies V̂it − V̂i,t+1 ≥ 0 for all i and t.

The number of decision variables in AF is manageable, but the number of constraints is of
the order of |R|2nτ . Vossen and Zhang [16] use Dantzig-Wolfe decomposition to derive a reduced
formulation of AF , where the number of constraints is of the order of 2nτ .

We give an alternative, simpler proof of the reduction. We begin by noting that constraints (4)
can be written as

min
r∈R,S⊂S(r)

{
θt − θt+1 +

∑
j

λPj(S)[
∑
i∈j

Vi,t+1 − fj ] +
∑
i

[Vit − Vi,t+1]ri

}
≥ 0 (5)

for all t. Now recall that an optimal solution to AF satisfies Vit − Vi,t+1 ≥ 0 (shown in [17]).
Therefore, the coefficient of ri in the minimization problem (5) is nonnegative, and we can assume
ri ∈ {0, 1} in the minimization. Moreover, since Vit − Vi,t+1 ≥ 0, for any set S, we have ri = 0 for
i ̸∈ S. On the other hand, feasibility requires we have ri = 1 for i ∈ S. Therefore, (5) can be written
as

min
S⊂J

{
θt − θt+1 +

∑
j

λPj(S)[
∑
i∈j

Vi,t+1 − fj ] +
∑
i

1[S∈i][Vit − Vi,t+1]
}
≥ 0. (6)

Now, just set βt = θt − θt+1, and γit = Vit − Vi,t+1 ≥ 0, and observe that
∑τ
k=t+1 γik = Vi,t+1

when we use the boundary condition Vi,τ+1 = 0. With this change of variables, we can write AF
equivalently as

V RAF = min
β,γ

∑
t

βt +
∑
t

∑
i

γitr
1
i

s.t.

(RAF ) βt +
∑
i

[
1[S∋i]γit + (

τ∑
k=t+1

γik)λQi(S)

]
≥ λR(S) ∀t, S (7)

γit ≥ 0.
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Notice that the number of constraints in the reduced formulation RAF is an order of magnitude
smaller than AF . Taking the dual of RAF by associating dual variables ht,S with constraints (7),
we get

V dRAF = max
h

∑
t,S⊆N

λR(S)ht,S

s.t.
t−1∑
k=1

∑
S⊆N

λQi(S)hk,S +
∑
S⊆N
S∋i

hk,S ≤ r1i ∀i, t

(dRAF )
∑
S⊆N

ht,S = 1 ∀t

ht,S ≥ 0.

Vossen and Zhang [16] derive the formulation dRAF using Dantzig-Wolfe decomposition. The above
arguments also imply that

Proposition 1. V AF = V RAF = V dRAF .

4 Tractable formulations for MNL with a single segment

In this section we restrict our attention to the MNL model with a single segment and develop our
tractable approximations. We first show that the affine relaxation is NP-complete even for the
MNL model with a single segment. On the other hand, for the same choice model CDLP remains
tractable. We compare the affine relaxation with CDLP , which gives crucial insight for deriving
our tractable approximations. In §5 we extend the formulations to the MNL model with multiple
segments, and disjoint consideration sets.

4.1 NP-completeness of the affine separation for single-segment MNL

Although RAF has fewer constraints than AF , it is still exponential in the number of products.
Therefore, we have to generate constraints (7) on the fly. Given a set of values (βt, γit), the separation
problem at time t is to decide if constraint (7) is satisfied for all S, and if not, add the violated
constraint to the LP.

Note that for the single-segment MNL, the formulas for the probabilities, expected resource
consumptions and revenues are

Pj(S) =
1[j∈S]wj

1 +
∑
j′∈S wj′

Qi(S) =

∑
j∈S,j∋i wj

1 +
∑
j∈S wj

R(S) =

∑
j∈S fjwj

1 +
∑
j∈S wj

,

where we drop the segment superscript in l in wlj and write the weights as wj .

Inequalities (7) for MNL then become, for a given t and S,

βt + γSt +
∑
i

[
(

τ∑
k=t+1

γik)λ

∑
j∋i,j∈S wj

1 +
∑
j∈S wj

]
≥ λ

∑
j∈S fjwj

1 +
∑
j∈S wj
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where γSt =
∑
i 1[S∋i]γit. Multiplying both sides by the positive quantity 1 +

∑
j∈S wj and simpli-

fying, constraint (7) can be written as

βt +
∑
j∈S

wj

[
βt + λ

(∑
i∈j

(
τ∑

k=t+1

γik)− fj
)]

≥ −γSt
(
1 +

∑
j∈S

wj
)
. (8)

Therefore, for the single segment MNL model, constraint (7) in RAF can be replaced by constraint
(8). The separation problem then is to find, for a given t and a set of values of (βt, γit), if a set
S violates constraint (8). For arbitrary values of βt and γit ≥ 0 we show below that this is NP-
complete. Proposition 2 below states that separation problem (5) for MNL with a single segment,
as given in (8) is NP-complete.

Proposition 2. The following problem is NP-complete: For any set of wj ≥ 0, 1 ≥ λ ≥ 0, fj ≥ 0,
and values βt and γit ≥ 0, find a set S that violates (8).

This limits our ambitions of improving CDLP as the single-segment MNL is arguably the simplest
possible choice model (after the independent-class model). Nevertheless, it is useful to compare
CDLP with affine relaxation as we do next.

4.2 CDLP vs. AF

CDLP can be written equivalently, in an expanded redundant way with time-dependent variables,
as follows:

V CDLP
′
= max

h

τ∑
k=1

∑
S⊆J

λR(S)hkS

s.t.

t∑
k=1

∑
S⊆J

λhkSQ(S) ≤ r1 t = 1, . . . , τ (9)

(CDLP ′)
∑
S⊆J

hkS = 1 ∀k = 1, . . . , τ (10)

0 ≤ hkS , ∀S ⊆ J.

Letting γit and βt be the dual variables corresponding to (9) and (10), respectively, the constraints
in the dual of CDLP ′ are βt +

∑
i

(∑τ
k=t γik

)
λQi(S) ≥ λR(S) for all t and S. Using the single

segment MNL formulas for the expected resource consumptions and expected revenues, the dual
constraint can be written as

βt +
∑
j∈S

wj

[
βt + λ

(∑
i∈j

(

τ∑
k=t

γik)− fj
)]

≥ 0 ∀t, S

which is almost identical to the left-hand-side of (8) except that the summation goes from k = t.
To make the comparison easier, we rewrite the CDLP ′ dual constraint as

βt +
∑
j∈S

wj

[
βt + λ

(∑
i∈j

(
τ∑

k=t+1

γik)− fj
)]

≥ −
∑
j∈S

wjλ
∑
i∈j

γit ∀t, S. (11)

We obtain now an easy comparison of the CDLP and the AF upper bounds.
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Proposition 3. V AF ≤ V CDLP .

Proof
By Proposition 1, V AF = V RAF and by strong duality CDLP ′ and its dual have the same optimal
objective function value. So it suffices to compare the dual of CDLP ′ with RAF . Notice that the
objective function of the dual of CDLP ′ is

∑
t βt +

∑
i

∑
t γitr

1
i , which is identical to the objective

function of RAF . As the objective functions are the same, we compare the constraints of RAF with
those of the dual of CDLP ′, namely, (8) with (11). The left-hand sides of both inequalities are
identical, and comparing the terms on the right hand side of both, we observe

γSt(1 +
∑
j∈S

wj) ≥ λ
∑
j∈S

wj(
∑
i∈j

γit)

as 0 ≤ λ ≤ 1, and γSt ≥
∑
i∈j γit ≥ 0 for all j ∈ S. Thus the affine relaxation has a larger feasible

region in this minimization linear program.
2

The relation between the CDLP and AF bounds is shown in [17], but our short proof for the
single-segment MNL model gives crucial insight for deriving tractable relaxations. In the following,
we show how to obtain relaxations that remain tractable for the single-segment MNL model and
that lie in between the CDLP and the AF bounds, by concentrating our attention on the right-hand
side of (8).

4.3 Weak affine relaxation 1

We motivate our first relaxation as follows: The difficult term in (8) is the γSt(1 +
∑
j∈S wj), and

CDLP is tractable as it replaces this by λ
∑
j∈S wj(

∑
i∈j γit). We instead replace the right hand

side of constraint (8) with −γSt −
∑
j∈S wj(

∑
i∈j γit) and solve the linear program

V wAR1 = min
β,γ

∑
t

βt +
∑
t

∑
i

γitr
1
i

s.t.

βt +
∑
j∈S

wj [βt + λ(
∑
i∈j

(
τ∑

k=t+1

γik)− fj)] ≥ −γSt −
∑
j∈S

wj(
∑
i∈j

γit) ∀t, S (12)

γit ≥ 0.

Proposition 4 below shows that the above LP gives an upper bound on the value function that is
weaker than the AF bound but stronger than CDLP.

Proposition 4. V AF ≤ V wAR1 ≤ V CDLP .

Proof
The proof follows by noting that γSt(1+

∑
j∈S wj) ≥ γSt+

∑
j∈S wj(

∑
i∈j γit) ≥ λ

∑
j∈S wj(

∑
i∈j γit)

and using the same arguments as in the proof of Proposition 3.
2

In the remainder of this section, we show that weak affine relaxation 1 can be formulated as a
compact linear program and is therefore tractable. We begin by observing that constraint (12) is
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easy to separate. Given a set of values (βt, γit), the separation problem at time t can be formulated
as the integer program

V S1t = max
q,u

−
∑
i

γitqi −
∑
j

wj

[
βt + λ

(∑
i∈j

(

τ∑
k=t+1

γik)− fj
)
+
∑
i∈j

γit

]
uj

uj − qi ≤ 0 ∀i ∈ j, ∀j (13)

(S1t) qi ≤ 1 ∀i (14)

uj ≥ 0, integer

where the decision variables qi and uj , respectively, indicate if resource i and product j are open.
The first constraint ensures that a product is open only if all the resources it consumes are open. If
V S1t ≤ βt, constraint (12) is satisfied by all S at time t; otherwise there is a set which violates the
constraints and we add it to the LP.

Now, just observe that the constraint matrix of the above integer program has exactly one +1
and one −1 coefficients in each row, and hence is totally unimodular. So we can ignore the integer
restriction and solve S1t exactly as a linear program. Notice that in the above formulation we used
the fact that γit ≥ 0 to allow qi to be unrestricted.

Since the separation problem can be solved as an LP, we can fold it in into the original LP
to obtain a compact formulation as follows: First take the dual of S1t with dual variables πij
corresponding to (13), and ψj to (14) :

V dS1t = min
π,ψ

∑
i

ψi

s.t.
∑
i∈j

πij ≥ −wj
[
βt + λ

(∑
i∈j

(

τ∑
k=t+1

γik)− fj
)
+

∑
i∈j

γit

]
∀j

(dS1t) −
∑
j∋i

πij + ψi = γit ∀i

πij , ψi ≥ 0.

Then use the second constraint in the above LP to eliminate the variable ψi to write the dual as

V dS1t = min
π

∑
i

[∑
j∋i

πij − γit

]
s.t.

∑
i∈j

πij ≥ −wj
[
βt + λ

(∑
i∈j

(

τ∑
k=t+1

γik)− fj
)
+

∑
i∈j

γit

]
∀j

∑
j∋i

πij ≥ γit ∀i

πij ≥ 0.

Thus constraints (12) amount to a condition that V dS1t ≤ βt for all t, which can be written, in lieu
of (12), as (15–17) below. Putting everything together, the linear program for our first weak affine

11



relaxation in its entirety can be written as:

V wAR1 = min
β,γ,π

∑
t

βt +
∑
t

∑
i

r1i γit

s.t. βt ≥
∑
i

[∑
j∋i

πijt − γit

]
∀t (15)

(wAR1)
∑
i∈j

πijt ≥ −wj
[
βt + λ

(∑
i∈j

(
τ∑

k=t+1

γik)− fj
)
+

∑
i∈j

γit

]
∀t, j (16)

∑
j∋i

πijt ≥ γit ∀i, t (17)

γit, πijt ≥ 0.

The size of wAR1 is polynomial in the number of resources, products and the length of the booking
horizon. Hence, not only is it stronger than CDLP, it is also tractable. Notice that this formulation
would have been hard to derive and justify without the line of reasoning starting from AF .

The dual of wAR1 gives more insight into the formulation. By associating dual variables with
constraints (15), (16), and (17), and after some simplifications, we get the dual LP as

V dwAR1 = max
x,ρ

λ
∑
t

∑
j

fjxjt

s.t x0t +
t−1∑
s=1

∑
j∋i

λxjs +
∑
j∋i

xjt − ρit ≤ r1i ∀i, t

(dwAR1) x0t +
∑
j

xjt = 1 ∀t

xjt
wj

− x0t + ρit ≤ 0 ∀i, j ∈ i, t

x0t, xjt, ρit ≥ 0.

Using the same interpretation as SBLP , the decision variable xjt can be viewed as the sales rate
for product j and at time t, and the variable x0t as the no-purchase rate at time t.

4.4 Weak affine relaxation 2

In this section we consider a complementary relaxation that uses a different bound than weak affine
relaxation 1. Our second relaxation is based on the following identity:

Proposition 5. γSt
(∑

j∈S wj
)
≥

∑
i,j

[
1[S∋i] + 1[S∋j] − 1

]
γitwj +

∑
i

[
1− 1[S∋i]

](∑
j∋i γitwj

)
.

Proof
Appendix.

2

So just as we did before, we replace the right hand side of constraints (8) with−γSt−
∑
i,j

[
1[S∋i]+

12



1[S∋j] − 1
]
γitwj −

∑
i

[
1− 1[S∋i]

](∑
j∋i γitwj

)
and solve the LP

V wAR2 = min
β,γ

∑
t

βt +
∑
t

∑
i

γitr
1
i

s.t.

βt +
∑
j∈S

wj

[
βt + λ

(∑
i∈j

(
τ∑

k=t+1

γik)− fj
)]

≥ (18)

−γSt −
∑
i,j

[
1[S∋i] + 1[j∈S] − 1]γitwj −

∑
i

[1− 1[S∋i]
](∑

j∋i
γitwj

)
∀t, S

γit ≥ 0.

The separation problem (18) can be solved as the following integer program with the same
totally-unimodular constraint matrix as before, and checking if its value is ≤ βt:

max
q,u

−
∑
j

wj [βt + λ(
∑
i∈j

(

τ∑
k=t+1

γik)− fj)]uj −
∑
i,j

[uj + qi − 1]γitwj

−
∑
i

[1− qi]γit(
∑
j∋i

wj)−
∑
i

γitqi

(S2t) uj − qi ≤ 0 ∀i ∈ j, ∀j
qi ≤ 1 ∀i
uj ≥ 0, integer.

This can be folded into the original problem to obtain a compact formulation the same way as in
§4.3; we omit the details.

Neither of the two relaxations is uniformly tighter than the other. In our numerical experiments
in §7 weak affine relaxation 1 generally tends to produce tighter bounds, but there are instances
where weak affine relaxation 2 is tighter.

5 Formulation for multiple segments with disjoint consider-
ation sets

We now extend the weak affine relaxation 1 of §4.3 to incorporate multiple segments, with MNL
choice model and disjoint consideration sets (the development for §4.4 is similar). We show that our
formulation gives an upper bound that falls in between the CDLP and AF bounds, as for the single
segment case.

Let Il = {i|∃j ∈ Cl and j ∋ i} and Li = {l|i ∈ Il} and recall that we use, for S ⊂ J , S ∋ i if
there is some j ∈ S with j ∋ i.

We begin with the separation problem for AF as given in (6) but expressed in terms of βt and
γit’s: For time t, check for all S if the following holds true

βt + γSt +
∑
i

[
(

τ∑
k=t+1

γik)
∑
l

λlQ
l
i(S)

]
≥

∑
l

λlR
l(S), (19)

13



where we recall that γSt =
∑
i 1[S∋i]γit. Our idea is now to split this constraint into l separate

constraints by introducing variables βlt. In addition, we relax the constraint and only require that
for each l and Sl = S ∩ Cl, the following holds

βlt +
∑
i∈Il

γSl,t
λl∑

l′∈Li
λl′

∑
j∈Sl

P lj(Sl) + P l0(Sl)

+
∑
i

[
(

τ∑
k=t+1

γik)λlQ
l
i(Sl)

]
≥ λlR

l(Sl). (20)

Since
∑
j∈Sl

P lj(Sl)+P
l
0(Sl) = 1, and as 1[Sl∋i] = 1[S∩Cl∋i], it follows that

∑
l

∑
i∈Il

γSl,t
λl∑

l′∈Li
λl′

=∑
l

∑
i∈Il

1[S∩Cl∋i]
λlγit∑
l′∈Li

λl′
=

∑
i∈S γit = γSt. Therefore, summing (20) over all segments l we

obtain (19) with βt =
∑
l βlt. Therefore, the segment level constraints (20) imply (19). As this is a

minimization problem, we obtain a looser upper bound by separating over (20) instead of (19).

Now using the same relaxation as we did for the single-segment case to obtain (12), we obtain
a segment-based weak affine relaxation for MNL that solves the following separation problem S1l,t,
which is of the same form as S1t, for each segment l (the full derivation is in the Appendix under
proof of Proposition 6):

V S1l,t = max
q,u

∑
j∈Cl

λl

[
fj −

∑
i∈j

(

τ∑
k=t+1

γik +
γit∑

l′∈Li
λl′

)− βlt
λl

]
wjuj −

∑
i∈Il

λlγit∑
l′∈Li

λl′
qi

s.t uj − qi ≤ 0 ∀i ∈ j, j ∈ Cl
(S1l,t) qi ≤ 1 ∀i ∈ Il

uj ≥ 0 ∀j ∈ Cl.

Now folding in the separation problem by taking the dual of S1l,t, and following the same steps
as for the single-segment case, we get the following linear program:

V swAR1 = min
γ,β,π

∑
i

∑
t

r1i γit +
∑
t

∑
l

βlt

s.t βlt ≥
∑
i∈Il

[ ∑
j∈i,j∈Cl

πijt −
λl∑

l′∈Li
λl′
γit] ∀l, t

(swAR1)
∑
i∈j

πijt ≥ λℓjwj

[
fj −

∑
i∈j

(
τ∑

k=t+1

γik +
γit∑

l′∈Li
λl′

)−
βℓj ,t

λℓj
] ∀j, t

∑
j∈i,j∈Cl

πijt −
λl∑

l′∈Li
λl′
γit ≥ 0 ∀i, l ∈ Li, t

γit, πijt ≥ 0,

where ℓj denotes the segment to which product j belongs. swAR1 can be viewed as the extension of
wAR1 to the MNL model with multiple segments and disjoint consideration sets. Note that swAR1
is again tractable as it is a compact linear program. Proposition 6 below shows that it also obtains
an upper bound on the value function that is tighter than CDLP .

Proposition 6. V AF ≤ V swAR1 ≤ V CDLP .

Proof
Appendix.
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2

As we show in the next section, it is possible to extend the formulation to the MNL model with
multiple segments when the consideration sets overlap. The dual of swAR1, which we give below,
turns out to be useful for this purpose.

V dswAR1 = max
x,ρ

∑
l

λl[
∑
t

∑
j∈Cl

fjx
l
jt]

s.t
∑
l

λl

 xl0t∑
l′∈Li

λl′
+

t−1∑
s=1

∑
j∋i,j∈Cl

xljs +

∑
j∋i,j∈Cl

xljt∑
l′∈Li

λl′
− ρlit∑

l′∈Li
λl′

 ≤ r1i ∀i, t

(dswAR1) xl0t +
∑
j∈Cl

xljt = 1 ∀l, t

xljt
wj

− xl0t + ρlit ≤ 0 ∀l, i, j ∋ i, j ∈ Cl, t (21)

xl0t, x
l
jt, ρ

l
it ≥ 0.

6 Overlapping consideration sets

When the segment consideration sets overlap, the CDLP formulation is difficult to solve, even for
MNL with just two segments. So one would imagine that it is difficult to find a tractable bound
tighter than CDLP in this case. One strategy, pursued in Meissner et al. [9] is to formulate the
problem by segments and then add a set of consistency conditions called product-cut equalities (PC-
equalities). These equalities apply to any general discrete-choice model and appear to be quite
powerful in numerical experiments, often bringing the solution close to CDLP value. Strauss and
Talluri [12] subsequently show that when the consideration set structure has a certain tree structure,
the cuts in fact achieve the CDLP value.

In this section we show that the PC-equalities, specialized for MNL, continue to be valid for our
formulation dswAR1, in the sense that after adding them, the value of the resulting linear program
is an upper bound on V DP .
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6.1 PC-equalities

We first state the equalities for MNL, to be added to the formulation SBLP of (2) (an explanation
for their validity can be found in [13]):

xlk
τwlk

= λl
∑

{Slm⊆(Cl∩Cm)|Slm∋k}

xlmSlm
, ∀k ∈ Cl ∩ Cm, ∀l,m (22)

xlmSlm,k
≤ xlmSlm

, ∀Slm ⊆ Cl ∩ Cm, k ∈ Cl \ Cm, ∀l,m (23)

∑
{Slm⊆(Cl∩Cm)|Slm⊇S̃lm}

 ∑
k∈Cl\Cm

wlkx
lm
Slm,k

+ (1 + wlSlm
)xlmSlm

 = (24)

∑
{Sml⊆(Cm∩Cl)|Sml⊇S̃lm}

 ∑
k∈Cm\Cl

wmk x
ml
Sml,k

+ (1 + wmSml
)xmlSml

 ,∀S̃lm ⊆ Cl ∩ Cm,∀l,m

We refer to SBLP with (22–24) as SBLP+; note the new variables of the form xlmSlm
defined for all

pairs of segments l,m and for all Slm ⊆ Cl ∩ Cm; and wlSlm
=

∑
j∈Slm

wlj . While not compact, when
the size of the intersections |Cl ∩ Cm| is small, this formulation is tractable.

Now we show that (22–24) can be added to dswAR1 and the resulting linear program gives an
upper bound on V DP .

6.2 Validity of PC-equalities for Weak Affine formulation

To show validity, as the feasible region of DP is contained in the feasible regions of dswAR1 as
well as that of SBLP+ (the latter shown in [13]), all we have to show is that the feasible region
of dswAR1 is contained in the feasible region of SBLP . This fact is implied by Proposition 6,
but we give a direct proof: We make the connection between dswAR1 and SBLP variables via
xlj = λl

∑τ
t=1 x

l
jt and xl0 = λl

∑τ
t=1 x

l
0t. So SBLP can be written in terms of the time-indexed

variables xljt and we consider dwAR1 as an extended formulation with new variables ρlit, and the

projection of dswAR1 into the space of the variables xljt is now shown to be a subset of SBLP .

Consider a feasible solution of dswAR1. The solution clearly satisfies
∑
t λl(x

l
0t +

∑
j∈Cl

xljt) = λlτ

and hence xl0 +
∑
j∈Cl

xlj = λlτ . Likewise,
xl
j

wl
j

− xl0 ≤ −λl
∑
t ρ
l
it ≤ 0.

So the only remaining set of constraints to verify is (3). Consider the constraints of dswAR1 for
period τ : ∑

l

λl

 xl0τ∑
l′∈Li

λl′
+
τ−1∑
s=1

∑
j∋i,j∈Cl

xljs +

∑
j∋i,j∈Cl

xljτ∑
l′∈Li

λl′
− ρliτ∑

l′∈Li
λl′

 ≤ r1i

which can be rewritten as∑
l

∑
j∋i,j∈Cl

(xlj − λlx
l
jτ ) + λl

[
xl0τ∑
l′∈Li

λl′
+

∑
j∋i,j∈Cl

xljτ∑
l′∈Li

λl′
− ρliτ∑

l′∈Li
λl′

]
≤ r1i .

So it is enough to show∑
l

λl

[
xl0τ∑
l′∈Li

λl′
+

∑
j∋i,j∈Cl

xljτ∑
l′∈Li

λl′
− ρliτ∑

l′∈Li
λl′

]
≥

∑
l

λl
∑

j∋i,j∈Cl

xljτ ,
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or ∑
l

λlx
l
0τ + λl(1−

∑
l′∈Li

λl′)
∑

j∋i,j∈Cl

xljτ − λlρ
l
iτ ≥ 0,

which is true as (21) implies ρliτ ≤ xl0τ and (1−
∑
l′∈Li

λl′) ≥ 0.

So in conclusion, when segment consideration sets overlap, we also have

Proposition 7. The objective function value of swAR1 with (22–24) added, with xlk = λl
∑τ
t=1 x

l
kt

in (22), is less than or equal to V SBLP+.

7 Computational Experiments

In this section, we compare the upper bounds obtained by the tractable formulations with those
obtained by the choice deterministic linear program and the affine relaxation on different test prob-
lems. We test the performance of our benchmark solution methods on a parallel flights network and
a hub and spoke network, with a single hub serving multiple spokes. In all of our test problems, we
have multiple customer segments with disjoint consideration sets and choice within each segment
is governed by the MNL model. We begin by describing the different benchmark solution methods
and the experimental setup.

Choice deterministic linear program (CDLP ) This is the solution method described in §3.1. Since
all our test problems involve the MNL choice model with disjoint consideration sets, we use the
compact sales-based formulation, SBLP , to compute the upper bound.

Weak affine relaxation 1 (wAR1) This is the version of weak affine relaxation 1 that applies to
multiple segments and described in §5 (swAR1).

Weak affine relaxation 2 (wAR2) This is the version of weak affine relaxation 2 that applies to
multiple segments. As mentioned, it is possible to extend the weak affine relaxation 2 method
described in §4.4 to the setting with multiple segments by following the steps in §5.

Affine relaxation (AF ) This is the solution method described in §3.2. We use the reduced formulation
RAF of [16] to compute the affine relaxation upper bound. Note that while the number of decision
variables in RAF is manageable, it has a large number of constraints. We solve RAF by generating
constraints on the fly (using integer programming) and stop when we are within 1% of optimality.

7.1 Parallel Flights

We consider N parallel flights that operate between the same origin-destination pair. Note that the
flight legs correspond to the resources in our network RM formulation. There is a high fare-product
and a low fare-product on each flight leg so that the total number of products is 2N . The high
fare-product is 50% more expensive than the low fare-product.

We have two customer segments. The first segment is interested only in the low fare-products
while the second segment is interested only in the high fare-products. So the consideration sets of
the two segments are disjoint. Moreover, within each segment choice is according to the MNL model.

We measure the tightness of the leg capacities using the nominal load factor, which is defined
in the following manner. Letting Ŝlt = argmax Sl

Rl(Sl) denote the optimal set of products offered
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to segment l at time period t when there is ample capacity on all flight legs, we define the nominal
load factor

α =

∑
l

∑
t

∑
i λltQ

l
i(Ŝlt)∑

i r
1
i

,

where λlt denotes the arrival rate for segment l at time period t.

We consider one set of test problems where the arrival rates remain the same throughout the
booking period. The total arrival rate in each period is 0.9. We refer to these test problems as
stationary arrivals. We also consider a second set of test problems where we divide the booking
period into three intervals of equal length. The arrival rates remain the same within each interval,
but increase from the first interval to the third. The total arrival rate in the first, second, and
third intervals are 0.3, 0.6 and 0.9, respectively. We refer to the second set of test problems as non-
stationary arrivals. For both stationary and non-stationary arrivals, we label our test problems by
(N,α) where N ∈ {4, 6, 8} and α ∈ {0.8, 1.0, 1.2, 1.6}. We have τ = 200 in all of our test problems.

Table 1 gives the upper bounds obtained by CDLP , wAR1, wAR2 and AF for parallel flights
with stationary arrivals. The first column in Table 1 gives the problem characteristics. The second,
third, fourth and fifth columns give the upper bounds obtained by CDLP , wAR1, wAR2, and AF ,
respectively. The last three columns give the percentage gap between the upper bounds obtained
by CDLP and wAR1, CDLP and wAR2, and CDLP and AF , respectively. The upper bounds
obtained by wAR1 are on average 0.19% tighter than CDLP . wAR2 and AF obtain upper bounds
that are on average 0.13% and 0.38% tighter than CDLP . wAR1 in general obtains tighter bounds
than wAR2, although we observe instances where the upper bound obtained by wAR2 is slightly
tighter.

Table 2 gives the upper bounds obtained by the four benchmark solution methods for parallel
flights with non-stationary arrivals. The columns have the same interpretation as before. The
percentage gap between CDLP and the other three solution methods increases compared to the
stationary arrivals case. wAR1, wAR2, and AF on average produce upper bounds that are 0.7%,
0.2%, and 1.45% tighter than CDLP . wAR1 obtains upper bounds that are noticeably tighter than
wAR2, and roughly closes 50% of the gap between the CDLP and AF upper bounds.

Problem Upper Bound % Gap with CDLP
(N,α) CDLP wAR1 wAR2 AF wAR1 wAR2 AF
(4, 0.8) 11,101 11,079 11,077 11,050 0.20 0.22 0.46
(4, 1.0) 9,899 9,864 9,882 9,848 0.36 0.17 0.52
(4, 1.2) 8,342 8,342 8,342 8,341 0.00 0.00 0.01
(4, 1.6) 6,217 6,217 6,217 6,217 0.00 0.00 0.00
(6, 0.8) 12,880 12,850 12,834 12,807 0.23 0.36 0.57
(6, 1.0) 11,667 11,599 11,633 11,548 0.58 0.29 1.02
(6, 1.2) 9,861 9,859 9,861 9,843 0.02 0.00 0.18
(6, 1.6) 7,460 7,460 7,460 7,460 0.00 0.00 0.00
(8, 0.8) 12,695 12,690 12,684 12,673 0.04 0.09 0.18
(8, 1.0) 11,817 11,720 11,770 11,647 0.82 0.40 1.43
(8, 1.2) 10,070 10,063 10,070 10,049 0.06 0.00 0.20
(8, 1.6) 7,524 7,524 7,524 7,524 0.00 0.00 0.01

avg. 0.19 0.13 0.38

Table 1: Comparison of the upper bounds for the parallel flights test problems with stationary
arrival rates.
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Problem Upper Bound % Gap with CDLP
(N,α) CDLP wAR1 wAR2 AF wAR1 wAR2 AF
(4, 0.8) 7,935 7,935 7,935 7,935 0.00 0.00 0.00
(4, 1.0) 7,862 7,838 7,840 7,806 0.30 0.27 0.71
(4, 1.2) 6,877 6,841 6,865 6,806 0.53 0.18 1.04
(4, 1.6) 5,504 5,467 5,492 5,439 0.67 0.23 1.19
(6, 0.8) 7,537 7,524 7,527 7,501 0.18 0.13 0.48
(6, 1.0) 6,615 6,569 6,605 6,514 0.70 0.16 1.53
(6, 1.2) 5,819 5,768 5,807 5,720 0.87 0.21 1.70
(6, 1.6) 4,704 4,659 4,694 4,614 0.97 0.22 1.92
(8, 0.8) 7,043 6,981 7,016 6,919 0.88 0.38 1.76
(8, 1.0) 5,959 5,901 5,949 5,829 0.98 0.18 2.19
(8, 1.2) 5,165 5,101 5,153 5,037 1.24 0.24 2.48
(8, 1.6) 4,225 4,180 4,217 4,125 1.06 0.17 2.37

avg. 0.70 0.20 1.45

Table 2: Comparison of the upper bounds for the parallel flights test problems with non-stationary
arrival rates.

7.2 Hub and Spoke Network

We consider a hub and spoke network with a single hub that serves N spokes. Half of the spokes
have two flights to the hub, while the remaining half have two flights from the hub so that the
total number of flights is 2N . Figure 1 shows the structure of the network with N = 8. The

Figure 1: Structure of the airline network with a single hub and eight spokes.

total number of fare-products is 2N(N + 2). There are 4N fare products connecting spoke-to-hub
and hub-to-spoke origin-destination pairs, of which half are high fare-products and the remaining
half are low-fare products. The high fare-product is 50% more expensive than the corresponding
low fare-product. The remaining 4N2 fare-products connect spoke-to-spoke origin-destination pairs.
Half of the 4N2 fare-products are high fare-products and the rest are low fare-products, with the
high fare-product being 50% more expensive than the corresponding low fare-product.

Each origin-destination pair is associated with a customer segment and each segment is only
interested in the fare-products connecting that origin-destination pair. Therefore, the consideration
sets are disjoint. Within each segment choice is governed by the MNL model. As in the parallel
flights case, we consider two sets of test problems, one with stationary arrival rates and the second
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with non-stationary arrivals. We label our test problems by (N,α) where N ∈ {4, 6, 8} and α ∈
{0.8, 1.0, 1.2, 1.6}, which gives us 24 test problems in total. We use τ = 200 in all of our test
problems.

Table 3 compares the upper bounds obtained by the four solution methods for the hub and
spoke network with stationary arrivals. As expected, AF generates the tightest upper bound and
CDLP the weakest, with the wAR1 and wAR2 upper bounds sandwiched in between. wAR1 tends
to generate tighter upper bounds than wAR2, although we observe once instance where the wAR2
bound is tighter. The average percentage gap between wAR1 and CDLP is 1.59%, although we
observe instances where the gap is as high as 2.73%. The percentage gap between wAR1 and CDLP
seems to increase with the nominal load factor and the number of spokes in the network. The average
percentage gap between wAR2 and CDLP is 0.95%, although we notice gaps as large as 1.9%. AF
generates bounds that are on average 2.16% tighter than the CDLP bound.

Table 4 compares the upper bounds obtained by the benchmark solution methods for the hub
and spoke network with non-stationary arrivals. The results display the same trends as before.
The percentage gaps between CDLP and the other three solution methods increases, on average,
compared to the stationary arrivals case. wAR1, wAR2 and AF produce upper bounds that are
on average 2.75%, 1.6% and 3.43% tighter than the CDLP bound. The nominal load factor and
the number of the spokes in the network seem to be two factors which lead to larger gaps. Overall,
wAR1 tends to generate tighter bounds than wAR2, and it closes roughly 80% of the gap between
the CDLP and AF upper bounds.

Table 5 gives the CPU seconds required by the different solution methods for different numbers
of spokes in the network and different numbers of time periods in the booking horizon. All of our
computational experiments are carried out on a Pentium Core 2 Duo desktop with 3-GHz CPU and
4-GB RAM. We use CPLEX 11.2 to solve all linear programs. The running time of CDLP is of the
order of seconds, while those of wAR1, wAR2 and AF are generally in minutes. wAR1 typically
runs faster than AF and the savings can be significant especially for relatively large networks. In
light of the hardness result in Proposition 2, we only expect the savings in run times to increase
with the problem size.

Problem Upper Bound % Gap with CDLP
(N,α) CDLP wAR1 wAR2 AF wAR1 wAR2 AF
(4, 0.8) 7,180 7,176 7,176 7,155 0.06 0.07 0.35
(4, 1.0) 6,462 6,377 6,391 6,352 1.31 1.09 1.70
(4, 1.2) 6,138 6,053 6,067 6,027 1.38 1.15 1.81
(4, 1.6) 5,389 5,304 5,356 5,277 1.57 0.62 2.08
(6, 0.8) 6,918 6,891 6,889 6,860 0.39 0.42 0.84
(6, 1.0) 6,357 6,241 6,268 6,205 1.83 1.40 2.39
(6, 1.2) 5,799 5,683 5,710 5,654 2.00 1.53 2.50
(6, 1.6) 4,796 4,704 4,789 4,672 1.91 0.13 2.57
(8, 0.8) 6,040 5,992 6,003 5,959 0.79 0.60 1.33
(8, 1.0) 5,460 5,328 5,365 5,288 2.43 1.74 3.15
(8, 1.2) 4,993 4,857 4,899 4,817 2.73 1.90 3.52
(8, 1.6) 4,243 4,129 4,212 4,089 2.70 0.74 3.63

avg. 1.59 0.95 2.16

Table 3: Comparison of the upper bounds for the hub and spoke test problems with stationary
arrival rates.
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Problem Upper Bound % Gap with CDLP
(N,α) CDLP wAR1 wAR2 AF wAR1 wAR2 AF
(4, 0.8) 4,400 4,396 4,395 4,380 0.09 0.11 0.45
(4, 1.0) 4,138 4,053 4,065 4,036 2.05 1.74 2.45
(4, 1.2) 3,796 3,711 3,725 3,689 2.23 1.85 2.81
(4, 1.6) 3,100 3,037 3,092 3,024 2.03 0.25 2.47
(6, 0.8) 4,311 4,256 4,260 4,236 1.28 1.18 1.72
(6, 1.0) 4,015 3,900 3,924 3,868 2.87 2.26 3.68
(6, 1.2) 3,628 3,508 3,539 3,481 3.31 2.46 4.04
(6, 1.6) 2,855 2,769 2,846 2,751 3.00 0.34 3.64
(8, 0.8) 3,802 3,678 3,704 3,650 3.25 2.59 3.99
(8, 1.0) 3,440 3,308 3,345 3,273 3.85 2.76 4.86
(8, 1.2) 3,082 2,940 2,987 2,909 4.61 3.08 5.63
(8, 1.6) 2,475 2,364 2,460 2,341 4.46 0.59 5.41

avg. 2.75 1.60 3.43

Table 4: Comparison of the upper bounds for the hub and spoke test problems with non-stationary
arrival rates.

No. of CPU secs. No. of time CPU secs.
spokes CDLP wAR1 wAR2 AF periods CDLP wAR1 wAR2 AF

6 0.4 16 30 98 100 0.2 6 10 73
8 0.8 46 109 405 200 0.4 16 30 98
10 1.2 143 289 1,595 300 0.6 41 58 132
12 1.9 415 877 5,204 400 0.8 115 112 169

Table 5: CPU seconds for CDLP , wAR1, wAR2 and AF as a function of the number of spokes in
the airline network and the number of time periods in the booking horizon.

8 Contribution

We have proposed tractable approximation methods for the choice network RM problem, when choice
is according to the MNL model. CDLP and the affine relaxation are two methods in the literature
that give upper bounds on the value function. While CDLP is known to be tractable for the MNL
model, we show that the affine relaxation is NP-hard even for the single segment MNL model.
Nevertheless, our analysis helps to isolate the term in the affine relaxation which makes it hard to
solve. By relaxing this difficult term, we obtain weaker, but tractable approximations. We show
that our approximations yield upper bounds that are in between the CDLP and affine bounds.
Our relaxations retain the appeal of the formulation discovered in Gallego et al. [5] in that they
involve solving compact linear programs, eliminating the need for constraint or column generation.
We extend our approximations to the MNL model with multiple segments and disjoint consideration
sets. We describe how the formulation can be extended to the case where the consideration sets
overlap. Our computational study indicates that our approximations often produce upper bounds
that are close to the affine bound and are tractable alternatives to solving the affine relaxation.
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Appendix: Proofs

Proof of Proposition 2: NP-completeness of the separation problem for
single-segment MNL

We show that solving the separation problem (8) for single-segment MNL is NP-complete. Our
reduction is from the following NP-complete biclique problem ([10]). We state first the definitions
and notation in the problem.

The problem is defined on an undirected, bipartite graph G = (V1 ∪ V2, E), with |V2| = m2. A
(k1, k2)-biclique is a complete bipartite subgraph of G, i.e., a subgraph consisting of a pair (X,Y )
of vertex subsets X ⊆ V1 and Y ⊆ V2, |X| = k1 > 1, |Y | = k2 > 1, such that there exists an edge
(x, y) ∈ E, ∀x ∈ X, y ∈ Y . Note that the number of edges in the biclique is k1k2.

Maximum edge biclique problem (MBP)
Input: A bipartite graph G = (V1 ∪ V2, E) and a positive integer p.
Question: Does G contain a biclique with at least p edges.

Consider the complementary bipartite graph Ḡ of G defined on the same vertex set as G, where
there is an edge e = (u, v) in graph Ḡ if and only if there is no edge between u and v in G.

Define a cover CS ⊆ V2 of a subset S ⊆ V1 in the complement graph Ḡ, as CS = {v ∈ V2|∃e =
(u, v) ∈ Ḡ, u ∈ S}. By definition if CS is a cover of some subset S, it means there is no edge from
any u ∈ S to any v ∈ V2\CS in the graph Ḡ. Hence, as G is a complement of Ḡ, there is an edge
from every u ∈ S to every v ∈ V \C(S) in G, thus representing a biclique between S and V \C(S) in
the graph G.

Now we set up the reduction for the separation for (8). In equation (8), for each u ∈ V1, we

associate a product j with fj = m2
(p+1)
p and wj = m2. For each v ∈ V2, we associate a resource i

with weights γit =
1
p and γik = 0, k > t. The resource consumptions of the products j are defined

from the graph Ḡ: j contains all the i such that there is an edge between the associated nodes in
Ḡ. We let λ = 1, βt = m2.

We now claim that G has a (k1, k2)-biclique with k1k2 ≥ p if and only if there is a set S that
violates the inequality (8) for this instance.

With the above values, S ⊆ V1, with |S| = k1, |C(S)| = m2 − k2 violates (8) if and only if

m2 −
∑
j∈S

(p+1)
p (m2)

2

(1 +
∑
j∈Sm2)

< −
∑

i∈C(S)

1

p

or,

m2 −
(p+ 1)m2k1

p( 1
m2

+ k1)
< − (m2 − k2)

p

or multiplying both sides by the positive number p( 1
m2

+ k1),

m2p(
1

m2
+ k1)− (p+ 1)m2k1 < −(m2 − k2)(

1

m2
+ k1)

or,

p < − (m2 − k2)

m2
+ k2k1.
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The term 0 < (m2−k2)
m2

< 1 implies, if and only if

p ≤ k2k1.

Proof of Proposition 5

The right hand side can be written as

γSt(
∑
j∈S

wj)−
∑

{i,j|1[S∋i]=0,1[S∋j]=0}

γitwj +
∑
i

[1− 1[S∋i]](
∑
j∋i

γitwj).

So it is enough to show that

−
∑

{i,j|1[S∋i]=0,1[S∋j]=0}

γitwj +
∑
i

[1− 1[S∋i]](
∑
j∋i

γitwj) ≤ 0.

Examining the term,

−
∑

{i,j|1[S∋i]=0,1[S∋j]=0}

γitwj +
∑
i

[1− 1[S∋i]](
∑
j∋i

γitwj)

= −
∑

{i,j|1[S∋i]=0,1[S∋j]=0}

γitwj +
∑
i̸∈S

γit(
∑
j∋i

wj)

= −
∑

{i,j|S ̸∋i,S ̸∋j,}

γitwj +
∑
S ̸∋i

γit(
∑
j∋i

wj)

= −
∑

{i,j|S ̸∋i,S ̸∋j,j ̸∋i}

γitwj −
∑
S ̸∋i

γit(
∑
j∋i

wj) +
∑
S ̸∋i

γit(
∑
j∋i

wj) ≤ 0,

where the last equality follows from the fact that for all i ∈ {i|S ̸∋ i} we cannot have a j ∈ S with
i ∈ j.

Proof of Proposition 6

We first make the following two elementary observations: (i) If Π1 = minx f(x) s.t g(x) ≥ 0 and
Π2 = min f(x) s.t h(x) ≥ 0 and if h(x) ≤ g(x) for all x, then Π1 ≤ Π2. (ii) Similarly if Π′

1 =
minx f(x) s.t g1(x) + g2(x) ≥ 0 and Π′

2 = min f(x) s.t g1(x) ≥ 0, g2(x) ≥ 0, then Π′
1 ≤ Π′

2.

Consider (20) and do the same relaxation as we did in (12): Replace∑
i∈Il

γSl,t
λl∑

l′∈Li
λl′

∑
j∈Sl

P lj(Sl) =
∑
i∈Il

1[Sl∋i]
λlγit∑
l′∈Li

λl′

∑
j∈Sl

P lj(Sl)

by a smaller quantity
∑
j∈Sl

P lj(Sl)
∑
i∈j

λlγit∑
l′∈Li

λl′
. We then use observation (i) above and use

observation (ii) in summing over the l to show we get a looser bound than V AF . We fill in the
details below.
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The separation problem S1l,t that gives V
swAR1, in terms of P l0(Sl) =

1
1+

∑
k∈Sl

wl
k

and P lj(Sl) =

wl
j

1+
∑

k∈Sl
wl

k

is

−βlt +
∑
j∈Sl

λl

[
fj −

∑
i∈j

(
τ∑

k=t+1

γik +
γit∑

l′∈Li
λl′

)
]
P lj(Sl)−

[∑
i∈Il

1[Sl∋i]
λlγit∑
l′∈Li

λl′

]
P l0(Sl) ≤ 0. (25)

Consider now two intermediate problems:

V = min
β,γ

∑
l

∑
t

βlt +
∑
i

∑
t

r1i γit

s.t βlt ≥ λl
[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γik
]
−

∑
i∈Il

1[Sl∋i]γit
λl∑

l′∈Li
λ′l

∀t, l, Sl ⊂ Cl (26)

γit ≥ 0,

and

V̄ = min
β,γ

∑
l

∑
t

βlt +
∑
i

∑
t

r1i γit

s.t βlt ≥ λl
[
Rl(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γik
]

∀t, l, Sl ⊂ Cl (27)

γit ≥ 0.

We can interpret the first problem as a segment based relaxation of AF , while the second problem
can be viewed as a segment based relaxation of CDLP . Lemmas 1, 2 and 3 below show that
V AF ≤ V ≤ V swAR1 ≤ V̄ = V CDLP which proves the result.

Lemma 1. V ≤ V swAR1 ≤ V̄ .

Proof
Since the objective functions of all the problems are the same, we only need to compare the cor-
responding constraints. Since

∑
j∈i P

l
j(Sl) + P l0(Sl) = 1, it follows that constraint (25) implies

constraint (26) and we have V ≤ V swAR1.

On the other hand, the right hand side of constraint (27) can be written as

λl
[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γik
]
−

∑
i∈Il

λlQ
l
i(Sl)γit.

Now note that

λlQ
l
i(Sl)γit = λl1[Sl∋i]Q

l
i(Sl)γit = λl1[Sl∋i]

[∑
j∈i

P lj(Sl)
]
γit

≤ λl∑
l′∈Li

λl′
1[Sl∋i]

[∑
j∈i

P lj(Sl)
]
γit ≤

λl∑
l′∈Li

λl′
1[Sl∋i]

[∑
j∈i

P lj(Sl) + P l0(Sl)
]
γit

where the first equality holds since if 1[Sl∋i] = 0, then Qli(Sl) = 0 and the first inequality holds since∑
l′∈Li

λl′ ≤ 1. Therefore constraint (27) implies constraint (25) and we have V swAR1 ≤ V̄ .
2
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Lemma 2. V AF ≤ V .

Proof
Suppose that (β̂lt, γ̂it) satisfies constraint (26). Let S = ∪lSl. We have

∑
l

β̂lt ≥
∑
l

{
λl
[
Rl(Sl)−

∑
i∈Il

τ∑
k=t+1

Qli(Sl)γ̂ik
]
−

∑
i∈Il

1[Sl∈i]γ̂it
λl∑

l′∈Li
λ′l

}
= λ

[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂ik
]
−

∑
i

γ̂it
∑
l∈Li

1[Sl∈i]
λl∑

l′∈Li
λ′l

≥ λ
[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂ik
]
−

∑
i

γ̂it
∑
l∈Li

1[S∈i]
λl∑

l′∈Li
λ′l

= λ
[
R(S)−

∑
i

τ∑
k=t+1

Qi(S)γ̂ik
]
−

∑
i

γ̂it1[S∈i],

where the first equality uses the fact that Qli(Sl) = 0 for l /∈ Li and hence λQi(S) =
∑
l λlQ

l
i(Sl) =∑

l∈Li
λlQ

l
i(Sl). The inequality holds since 1[Sl∋i] ≤ 1[S∋i]. Hence (

∑
l β̂lt, γ̂it) is feasible for the

affine LP and the proof follows.
2

Meissner et al. [9] prove the following that we include for completeness.

Lemma 3. ([9]) V̄ = V CDLP .

Proof
Noting that the constraint in CDLP is equivalent to

βt = max
S

λ
[
R(S)−

∑
i

τ∑
k=t

Qi(S)γik
]
= max

S

∑
l

λl[R
l(S ∩ Cl)−

∑
i∈Il

τ∑
k=t

Qli(S ∩ Cl)γik
]

=
∑
l

max
Sl

λl[R
l(Sl)−

∑
i∈Il

τ∑
k=t

Qli(Sl)γik
]

where the last inequality uses the fact that the consideration sets are disjoint. Therefore, the CDLP
constraint is equivalent to the constraints βt =

∑
l βlt and βlt = maxSl

λl[R
l(Sl)−

∑
i∈Il

∑τ
k=tQ

l
i(Sl)γik

]
,

which is exactly constraint (27).
2
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