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Abstract

In this paper we propose a general technique to develop first and sec-
ond order closed-form approximation formulas for short-time options with
random strikes. Our method is based on Malliavin calculus techniques and
allows us to obtain simple closed-form approximation formulas depending
on the derivative operator. The numerical analysis shows that these for-
mulas are extremely accurate and improve some previous approaches on
two-assets and three-assets spread options as Kirk’s formula or the de-
composition mehod presented in Alos, Eydeland and Laurence (2011).
Keywords: Spread options, Kirk’s formula, Malliavin calculus, derivative
operator in the Malliavin calculus sense, Skorohod integral.

JEL code: G12, G13
Mathematical Subject Classification: 91B28, 91B70, 60HO07.

1 Introduction

This paper is devoted to the study of options with random strikes (as two-asset
and three-asset spread options), whose payoff is of the form

(St — Kr)4,

where S denotes the asset price and {K;,t € [0,7]} is a random process. In
the particular case that {S;} and {K;} are two geometric Brownian motions
(that may be correlated), the corresponding option price is given by the Mar-
grabe fomula (see Margrabe (1978)), which can be deduced from the fact that
{St/K,t € [0,T]} is a log-normal process. Thus, in this case, the spread op-
tion value can be expressed as the classical Black-Scholes call price with initial
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asset price Sy, where we take the strike equal to the expected value of K1 and

volatility equal to \/ 02 — 2poo’ + (0')*. Here o and o are the volatility para-

meters of S; and K, respectively, and p denotes the correlation. If K; :S; + K
(the two-asset spread case), the strike process is not log-normal and then the
arguments used in the deduction of Margrabe formula cannot be applied any-
more. In this context a successful method was suggested by Kirk (1995), who
proposed to approach S/ (S’ + K) by a log-normal random process and then
to apply the Margrabe formula. Nowadays Kirk’s formula is the most popular
option pricing approximation expression for spread options due to its accuracy
and its simplicity. A similar idea was proposed by Alos, Eydeland and Laurence
(2011), where the authors extended this approach to the tree-assets case (i.e.
Ky =S} + S? + K) and proposed a closed-form approximation as the price of a
vanilla option with strike equal to Ky = St + 52 + K and a suitably adjusted
volatility.

Both classical Kirk’s formula and its extension given in Alos, Eydeland and
Laurence (2011) are very simple and accurate. Nevertheless, there is not, up
to our knowledge, an analytical study of their goodness of fit or a systematic
method to improve them. Notice that in both approximations, the adjusted
volatility (deduced from the log-normal approximation of the strike process)
does not depend on the asset price Sy, so we can consider these adjusted volatil-
ities as first-order approximations of the corresponding implied volatilities as
functions of Sy.

In this paper we propose a systematic method to develop closed-form first
and second order short-time approximation formulas for options with random
strikes. The proposed first-order approximation formula will consist in the price
of an European call option with asset price Sy and strike price Ky and a ad-
justed volatility that does not depend on the asset price Sy. Then, by means of
Malliavin calculus we decompose the option price as the sum of this closed-form
approximation and two error terms. This decomposition gives us an extension
of the Margrabe formula that allows us to find an expression for the short-time
skew slope for spread options. Finally, the obtained expression for this skew will
give us a tool to construct an improvement of the approximation of the implied
volatility

The organization of this paper is as follows. In Section 2 we introduce the
framework of this paper. Section 3 is devoted to present an extended Margrabe
formula that gives us a systematic method to construct first-order approximation
prices. Moreover, this formula is used in Section 4 to figure up an expression
for the derivative of the implied volatility with respect to the log-stock price.
The short time behaviour of this derivative is analyzed in Section 5, and from
this study we deduce a method to obtain second-order approximation formulas.
Finally in Section 6 we apply our results to the study of two-assets and three-
assets spread options.



2 Statement of the model and notation

In this paper we consider the following model for the log-price of a stock
under a risk-neutral probability measure Q:

2 d ‘ d
X, = <r - ;) dt + 01(Y 0 psapdW + (| 1= p2 4 1dBy), t € [0,T]. (1)
i=1 i=1
Here, 7 is the instantaneous interest rate, W = (W', ..., W%) is a d-dimensional

Brownian motion, B is a standard Brownian motions and Pid+1 € (-1,1),
i €{1,...,d} and satisfy that Zle pidﬂ < 1. In the remaining of this paper
we assume that W and B are independent, and that, for the sake of simplic-
ity, the volatility process o is a square-integrable deterministic function which is
right-continuous. We denote by F" and F? the augmentation under the under-
lying probability measure of the filtrations generated by W and B, respectively.
We define F := FW v FB.

In this paper we consider European call options with payoff h(Xrp) :=
(eXT — KT)+ , where we allow the strike K7 to be random. More precisely, we
assume that {K;, ¢ € [0,T]} is a square-integrable, positive, continuous, bounded
and FV-measurable process. Notice that this choice includes some popular
classes of options as spread and basket options.

It is well-known that the price of an European call with random strike Kp
is given by the formula

Vo= e "TTVE (X — Kr)4|F) - (2)
In the sequel, we will make use of the following notation:

o M{":= E[Ky|F}V]. Observe that, by the martingale representation the-
orem (see, for instance, Karatzas and Shreve (1991)), there exist d F}V-
measurable processes m!(T,-), ..., m%(T, ) such that

M! = E(Kr)+ /Zm (T, s)dW?. (3)

[N

d{MT x
o v = (%) , with Y; := ftT a’ds, where a?ds := o%ds — 2% +

d(MT M™T
% Note that

d i d

mi(T, s) m* (T, s
a> = o3 720—Szpi,d+l M7 JFZ (
i=1 s i=1 s
d d ; 2
m* (T, s)
= a? (1 - ZP?@H) + Z (Uspi,dJrl - MT)
i=1 i=1 s



is a positive quantity. Although the right-hand-side of the last equality
depends on T', we denote it by a2 in order to simplify the notation. Now
it is easy to see that there is a constant C' such that af > CO’?.

e BS(t,x, K, o) denotes the price of an European call option under the clas-
sical Black-Scholes model with constant volatility o, current log stock price
x, time to maturity T — ¢, strike price K and interest rate r. Remember
that in this case:

BS(t,z,K,0) = e*N(dy) — Ke " T N(d_),

where N denotes the cumulative probability function of the standard nor-
mal law and

T —xf o
dy =~ + VT —t,
= oVT —t 2

with zf :==In K — r(T —t).

e Lpg (02) stands for the Black-Scholes differential operator, in the log
variable, with volatility o :

1 1
EBS’ (0'2) = at + 50'2831 + (T — 50‘2)81 — 7

It is well known that Lpg (02) BS(-,-,0) = 0.

Now we describe some basic notation that is used in this article. For this, we
assume that the reader is familiar with the elementary results of the Malliavin
calculus, as given for instance in Nualart (2006).

Let us consider a standard Brownian motion Z = {Z,, ¢t € [0, T} defined on a
complete probability space (2, F, P). The set D}Q is the domain of the derivative
operator DZ in the Malliavin calculus sense. ]D)22 is a dense subset of L?(£2)
and DZ is a closed and unbounded operator from L?(€2) into L2([0, 7] x ). We
also consider the iterated derivatives D", for n > 1, whose domains is denoted
by D%

The adjoint of the derivative operator DZ, denoted by 67, is an extension of
the Ito integral in the sense that the set L2([0,T] x Q) of square integrable and
adapted processes (with respect to the filtration generated by Z) is included
in Domd? and the operator 67 restricted to L2([0,T] x Q) coincides with the

It6 integral. We make use of the notation 6% (u) = fOT usdZ; and 6Z(u1[t7T}) =
ftT urdZ;. We recall that 1Ly? := L2([0,T]; Dy?) is included in the domain of
5% for all n > 1.



3 A decomposition result and a first order ap-
proximation formula

Before proving an extension of the Hull and White formula, we state the fol-
lowing result, which is nedeed in the remaining of the paper.

Lemma 1 Let K be bounded, 0 <t < s < T and Gy := F; V .7-"%‘/. Then, for
any n > 0, there exists C = C(n, Z?Zl 7 q11) such that

|E (0372 = 92t BS(s, Xo, MT,0,)|Gr) |

T _%(n""l)
< C (/ U%dﬁ)
t

Proof: In order to show this result, we proceed as in the proof of Lemma
4.1 in Alods, Leén and Vives (2007) and we use the fact that K is a bounded
and F" —measurable and adapted process to obtain that

|E (0772 = 07+ BS(s, X, M ,0,)(G1) |

d s T 7%(n+1)
< C ((1 - szz,d-&-l)/ 5o Jr/ aﬁd@) :
i=1 t s

Notice that, as Z?Zl p?’ ar1 < 1, there exists a positive constant C' such that

LT azdd > CfST o2df, from where the result follows. m

Now we are able to prove the main result of this section, the extended Hull
and White formula. We will need the following hypothesis:

(H1) The process a® € Ly, for all i = 1, ....d.
Theorem 2 Consider the model (1) and assume that hyptothesis (H1) holds.
Then it follows that

Vi = E (BS(t, X, M v1)| )

d T
1 i
+§E < g {pi7d+1/ e (s (02, — 02,) BS(s, Xy, ML v5)o,AY ds
t

i=1

T )
+/ e—r(s—t)aK (8%1: _ az) BS(&XS’ M?vs)Angmi(T, S)dS} ‘ :Ft> 7(4)
t

where AW = [D;’w fST a2(r)dr} yi=1,..,d.

Proof: This proof is similar to the one of the main theorem in Alos, Leén
and Vives (2007), so we only sketch it. Notice that BS(T, X7, MX vr) = V.
Then, from (2), we have

¢ "V = B(e""BS(T, Xr, Kr,vr)| ).



Now, using the Itd’s formula to the process
t— e "'BS(t, Xy, M vy)

and proceeding as in Alos, Leén and Vives (2007) (see also Alos and Nualart
(1998), Alos (2006) or Nualart (2006)), we can write

e "' BS(T, X, M- vr)
= e "'BS(t, X¢, M v;)

T
+/ e " Lps(v)BS(s, Xy, ML vy)ds
¢

T d
Jr/ eirsaxBS(saX&MsTaUS)o—s Z(pi,d—&-ldvvsi) +
t

i=1

d
1= PlandBy
i=1

T
+ / e "0 BS (s, X, MT v, )dMT
t

T
+/ e 07 BS(s, Xo, M v)d (MT, X))
t

2 2

1 T —rs Vs — Qg
+§/t & aaBS(S,Xs,MZ,'US)mdS
T p Zél ;i AW?
77‘562 BS Xs MT . S i=1Fi,d+1%s d
+/t € To (Sﬂ y Mg,V ) 2U5(T— S) S
T d Wi, i
AN mN(T)s)
—7”362 BS Xs MT s Zz_l s ) d
+/t e o BS(s, Xs, M ,vs) 20n(T —5) s
1 T
+§ /t e " (a,fx — ar) BS(s, Xs, MST,’US) (O’? — U?) ds

1T
+§/ e "0k BS(s, Xo, M vs)d (MT,MT) .
t



Hence, the fact that Lps(v2)BS(s, X5, M v,) = 0, multiplying by e"*and tak-
ing conditional expectations we can establish

E (e*“T*t)BS(T, Xp, MT, ”UT)‘ }"t)

S

T
— E{BS(t,Xt,MtT,vt)+/ e "N BS(s, Xg, ME  v,)d (MT, X)

t

]. T ( t) T 'U2_a2
5 [ e, BS (s, X, ME 0
—i—2/75 e 0,BS(s . U)US(T—S) s

T d AWl
—r(s=992 BS(s. X.. MY Os Z’L:l Pid+12s d
+/t\ € ro (Sa S s 7/US) 2US(T7$) S

T d Wt g
(s AV m (T, s)
r(s—t) 92 B T Zz_l s ’
e 0o BS(s, Xs, M, ,v5) 20n(T —5)

ds

S

+
—~

T
+ / e (st (331 — 0,) BS(s, X, M v,) (ai — v?) ds
¢

ft}.

DN =

T
/ e "0k BS(s, Xo, MY vg)d (MT, MT),
t

DN | =

+

Consequently, the classical relationships between the greeks

1
2 — = —e
9% .BS — 0,BS &,BSU(T 5
8%, BS = -9, Bsé
oK T YT Ko (T —t)
0% .BS =0, Bs;
KK =20 Y K26(T — 1)



give

E (e " BS(T, X, MF, vr)| 7.)

T
— {BS(t Xo, MF vy) — /e*“S*t)aUBS(s,XS,MZ,US)
t

1
— d(MT X
MgvS(T—s)d< XD,
1 02 — a2
- —r(s t) s s
2/ )0, BS(s, Xs, M7, )7US(T—5)dS
d i
4 AW
o052, BS(s, Xy, MT vy S22zt Piani e
/ (s, X, M ,vs) 20.(T — 5) s
d Wi, i
_ A mi(T,s)
r(s—t) 52 B X. Mt Zz_l s )
/ 0%, BS(s, Xs, M, ,vs) 20u(T — ) ds
1/ e "9, BS(s, Xo, MT v,) (02 — v?) L
2 5 (T — s)
1 1
- e T(s—1) T T agT
2/ 0,BS(s, Xs, M, ’vS)MSQUS(T—s)d<M , M >S‘}}}.

That is,
E (e TBS(T, Xr, MF,vr)| 7)

T T

sty Oa BS(s, X o, MT 0y)

= BS(t, Xy, M ve) + M) 2 o s
{ ( ts t 7Ut> /t\ € ’l)g(Tft)

d(M",X),

1 1
X MT +§(2 )ds+2(a —vf)ds—l—f

T d ) AW?
+/ e7 032, BS(s, X, M, v,) 2zt P ey
t

s s 204(T — )
S ft}

T d Wt g
AN mN(T,s)
-r(s=1)g2 B xX. MT 2171 s 5 g
+/t e OxoBS(s, X, M ,vs) 20u(T —5)

d(MT x d{MT MT .
< T ). <(MT)2 ). we obtain
5

Since, a’ds := o02ds —2
E (e T NBS(T, X, MF,vr)| 7)

== {BS(t Xtth ,’Ut)

A

+/ e "T92_BS(s, Xy, MY 0,) 7s doiz Pt A ds
t

205(T — 8)
+/T =092 BS(s, Xo, MT v )Zle AV m'(T,s) ) | o
€ s Vs S s
‘ o - 20,(T — 5) t




as we wanted to prove. m
Remark 3 Notice that, from the above decomposition result,
E (BS(t, Xy, M, v0)| )

can be seen as a first order approzimation formula for short-time random strike

options. Notice that the adjusted volatility v; is constant as a function of the

log-asset price X¢. Moreover, for short-time options, a Taylor expansion gives us

that vy can be approximated by \/E and then we can consider BS(t, Xy, ML, \/E)
as a first-order approximation formula for random strike options. In fact,

BS(t, Xy, ML, \/E) recovers Kirk’s formula and its tree-assets extension pre-

sented in Alos, Eydeland and Laurence (2011), as we will see in the following

examples.

Example 4 Assume the model (1) with constant volatility o, d = 1 and interest
rate r. We consider a call spread option with strike equal to K1 = S+ K, where
K is a non-negative deterministic constant and S' is another stock price of the
form S} = exp (Xfl) , where

2
dx) = <7" - (J;)> dt + o1 dW}, t € [0, 7],

for some positive constant 1. Then we can easily check that m! (T,0) =
exp(r(T — 0))Sgo1 and M} = exp(r(T — 0))S} + K. So

o o 20001 exp(r(T — 0))Ss  (01)* (exp(r(T — 0))S})
. exp(r(T —0))S5 + K (exp(r(T — 0))S} + K)*

which coincides with Kirk’s square implied volatility approximation. Notice that,
if K =0,
ag =o0? — 2p1 0001 + o2

and ngla2 (0) = 0. Then, equality (4) reduces to

Vi = BS (t, X, exp (r (T —1t)) S}, \/02 —2py 5001 + O'%) )
and we recover the well-known Margrabe formula (see Margrabe (1978)).

Remark 5 Notice that, in the context of the previous example, when K is neg-
ative, the call option on the spread St — Sk is equivalent to the corresponding
put option on the spread Sk — St with positive strike —K. Then, without loss
of generality, we can assume that the spread option is written with a positive K.

Example 6 Assume the model (1) with constant volatility o,d = 2 and interest
rater = 0, for the sake of simplicity. We consider a call spread option with strike



equal to Kp = St + S2 + K, where K is a non-negative deterministic constant
and S*,8? are two asset prices of the form S* = exp(X?). Here

2
dX} = <_‘721> dt + o1 dW}, t €[0,T]

o2
axiy = (‘22> dt + o9 (pl,Zthl +4/1 - PideE) , t€10,T]

In this case we have that
ml(Tv 9) = 56101 + 59202p1,27m2(T7 0) = 5302 1- p%,QvMGT = S; + Sg + K.

Hence, similar arguments as in the previous example give us that
Sh S2
2 _ 2 0 ~ 6

Qg = 0 — 2[)11300'1W - 2p2’3002m

2 2
(510" 2ma(Shn) (Sh02) | (ton)
(Sy+S2+K)?  (Sh+S2+K)  (Sh+S2+K)

= o?— 2py 30010 — 2py 50020 + o2a? + 20109p; sab + o3b?,

where
5 d(X? X)
P23 =d </’1,2VV1 + /1= p W2 0 W+ P2,3W2> = ——",
t g0
2
a:= Sﬁiﬁ and b := Séf;ﬁ This expression coincides with the square im-

plied volatility approximation proposed in Alos, Eydeland and Laurence (2011).

4 Derivative of the implied volatility

Let I;(X;) denote the implied volatility process, which satisfies by definition
Vi, = BS(t, Xy, M, I;(X;)). In this section we prove a formula for its at-the-
money derivative that we use in Section 5 to study the short-time behavior of
the implied volatility and its dependence on the asset price.

Proposition 7 Assume that the model (1) holds with a € L‘l,{/%, for all i €

-1
{1,...,d} and that, for every fized t € [0,T), (ftT 03d6‘) < oo. Then it
follows that

8It( 5 E([! e msD(9,F (s, Xy, MT  v5) — F(s, Xy, ML v,))ds| Fr)
X, )= 8, BS(t,x;, MT, I,(z}))

10

I
Xi=x;

9

a.s.



where

d
1 i
F(SaXS?MsT”US) = 5 (8ga::zz - agw) BS<S7X87 M;T7’US)US Zpi,d+1A}9}V
i=1
d o
+0k (82, — 05) BS(s, X5, M), v,) ZAEVLm’(T, s)
i=1

and x} = In(M}) — (T —t).

Proof: Using Theorem 2 and the expression V; = BS(t, Xy, M, I,(X})) we
obtain

oV, ol
=L = 0,BS(t, Xy, M I,(X;)) + 8, BS(t, Xo, M I,(X;)) e~ (Xy)  (5)
8X, 0X,

and
oVy T 4 —r(s—t) T
X = E(0,BS(t, X¢, M ,v)|F) + E(| e 0. F (s, X5, M ,vs)ds|Fy).
¢ ¢
) ()
We can check that the conditional expectation E( [, e TGN, F (s, Xy, MT vy ds| Fy)is

-1
well defined and finite a.s. due to the fact that (];T UZdQ) < oo. Thus, (5)
and (6) imply
oI
el AN 7
6Xt (xt) ( )
1

= 0BG MT L) [E(0:BS(t,x}, M, 0)|Fy) — 0. BS(t, 27, M Iy(x}))
o [ iad A t t

T
+E(/ e "0, F (s, X, Mgavs)ds|ft)]
t

Xi=z}
Notice that

E(8,BS(t,x;, ML, v)|Fy)
= 0. E(BS(t,z, M}, v,)|F)|

r=x

. =0, BS(t,x, M | I)(2))|omaz, (8)

where, by the Hull and White formula, I?(X;) is the implied volatility of call
option with constant strike M, for a certain stochastic volatility model where
Pia+1 = 0 forall 2 =1,...,d and the volatility process is given by a;. Thus,

0z (BS(t,, M, I ()|, ..
o1°
oz

= 0,BS(t .y, M I)(«})) + 0o BS(t,wy, M I (7)) 5 - (27) . (9)

11



From Renault and Touzi (1996) we know that %—? (z7) = 0. Then, (7), (8) and
(9) imply that

ol , ,
87Xt(xt) (10)
1

= 9,BS(t,x, ML 10(x¥)) — 8, BS(t, x5, ML, I, (z*
5UBS(t,mz*,MtT,It(w2‘))[ (8,2, My, 1 (7)) (t,xy, My, Ii(x7))

T
+E(/ e_”(s_t)&ﬂF(s,XS, Mg,vs)ds|.7:t)]
¢

— ¥
Xi=x;

On the other hand, straightforward calculations lead us to
« 1
0.BS(t,xf, MT o) = e N(§0\/T —t)

and

. 1 1
BS(t,x;, ML o) = e (N(iavT —t) — N(—§o’\/T —t)).
Then

1, .
0 BS(tx}, M, 0) = 5 (€™ + BS(t 2}, M, 0)),

which yields

0. BS(t,x;, MT  I?(x})) — 0, BS(t, x5, M, I,(x}))
1 * £ k %
= §(BS(t7xt7MtT7It0(xt))_Bs(tameg‘vIt(xt)))
1

= SEBS(, z;, M v) — Vi| )

1 T
_ 75 E(/ e*T(S*t)F(S,XS,MsT,Us)d5|-7:t)
t
Xt:xf

This, together with (10), implies that the result holds. m

5  Short-time behaviour and second order ap-
proximation formulas

In this Section we study the short-time behaviour of the implied volatility in
order to describe its dependence on the asset price. More precisely, this section
is devoted to study the limit of g)?t (z7) as T | t. This analysis will gives us
a tool to improve the first-order approximation formula presented in Section.3.
The following result is part of the tool needed for our results.

Lemma 8 Assume the model (1) is satisfied. Then I:(z;)V/T —t — 0 a.s. as
T —t.

12



Proof: Notice that the fact that K is a square-integrable and continuous
random process and the dominated convergence theorem lead to get

Vilx,coy = BleT7(X — Kr)1|F)

-
t=Ty

- E (e—r(T—t) (eXT—Xte—r(T—t)MtT _ KT)+|ft)

t=Ty

< B (M — Kre )L |F)

e
t=Ty

= B (XX =TT 1 e T ] - Kr))4 | )|

o
t=Ty

< B (XX =T MI R
t=Ty
+E (M — KrleTO|F)|
t=Ty
< MtTE (‘eXT—Xt o er(T—t)Hj:t) .
+E (|M] - KT‘BT(T_t”]:t) L —> 0a.s.,

asT — t. Hence, taking into account that, in the at-the-money case, ‘/t|Xt:mZ =
BS(t,z;, M, I,(x})), we deduce that

2

I(z})vVT —t 1
BS(t,x;, ML I(x})) = 2MT e 7Tt [N ((xt)> - ] — 0 a.s.,

and this allows us to complete the proof. m
Henceforth we consider the following hypotheses:

(HD)

a’ € IL‘Q/[’,%, i € {1,...,d} and, moreover, there exists a positive constant C

such that, forall0 < s < <r < T, and 4,5 € {1, ...,d},

<C.

w?t 2
‘DS a’l"

+|Di DI

Notice that this hypothesis implies that (H1) holds.

There exist two positive constants cq,ca such that for all r € [0,T] ¢; <
o, < co. Notice that ag > CO’E for some positive constant C' > 0.Thus this
hypothesis implies that a? is lower bounded by a positive constant.

The processes m*(T,-) € LIl,[’/Qj, i,7 € {1,...,d} and moreover, there exists

a positive Fy—adapted process Cy such that for all T > s > r > ¢ and
ivj € {1, d},

E (’mi(T, r)|2} .7-}) + F <’ngimj(T,r)‘2

]:t> < Cy.

13



Proposition 9 Assume that the model (1) and Hypotheses (H1’)-(H3) hold.
Also assume that there is a constant ¢ > 0 such that ¢ < Ky, for all t € [0,T).
Then

0, BS (1,1, MT 1)) S5 (07)
1
= 5 ((8 —) ((‘32193 02, )BS(t xy, My T v, / Us;PdeA "ds
+0K (8 —) (62 a)BS(t,arf,MtT,vt)/ ZAW YT, s)ds .7:>
t
+O(T —¢t).
asT — t.

Proof: Proposition 7 gives us that

) 0L
&,BS(t,.’Et,ME;[t($t>)87)£(xt)
T d ;
= %E (/ 67T(Sit) (8 )(8§T’E aazw) BS(S’XS’MST’US)USZ’Divd""lAgvzds
. i=1

T
+/ e 79, — 1)aK (92, — 9,) BS(s, Xs, M, v,)
t

g

Now the proof is decomposed into two steps.
Step 1. Here we see that

XZAW YT, s)ds =T+ Ts.

i
Xi=x;

T = 2E(L(t xy, t,vt/ UsZpLd_HA ds|.7:t>+0( —-t), (11)

1=1

where L(s, X, M, v,) = (8, — 3) (92

3w — 024) BS(s, X5, MY, v,). In fact, ap-
plying It6 formula to

T d ,
e L(s, X, M7, 0,)( / S pras AV dr)

i=1

as in the proof of Theorem 2 and taking conditional expectations with respect
to F;, we obtain that
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1T 4
§E(/ e T L(s, X, ME v)os Z pi,d+1AZV ds|Fy)
t

i=1

1 T
= §E (L(t,Xt,MtT,vt)(/t USZ/)LdHAgV ds)|.7-'t>

i=1

I d i
+1E(/ e—T‘(S—t) (8£ww - 8§x)L(S7 XS’ ME? US)OS(Z pi,d-&-lA}s}V )
t i=1

T d )
X /UT.ij,d+1AZV]dT ds|Fy)

j=1
1 T d o
+1E(/ e " (02, — 0,)L(s, Xg, ML | 0y) (Z AV (T, s))
t i=1

T d )
X /UT.ij,d+1AZV]dT ds|Fy)
s j=1

| - -
+§E(/t e~ t)awL(s,Xs,MsT,Us) Ts Z Pj,d+1

ij=1

T .
X (/ (DSWJAXV )Pi,d+1‘7rd7°> ds|F)|

1. (7 .
+§E(/ e " L(s, Xy, MT  0,) Z m’ (T, s)
t i,j=1
T —
< [ OY A ) asl)

1 T d i
= iE (L(t’XtthT,vt)(/ Os Zpi,dJrlAZV ds)|ft>
t i=1
+S51 + So 4+ S3+ S4.

15



Using Lemma 1 and Hypotheses (H1’) and (H2), we can write

1 T
S = [TB() OB [0, - 02005, X M )] 61
t

XZ / piar AV 0rdr)ps gy AV 0 ds| F)

ij=1 "%
6 T T -%
< oy r|f (/ a3d9> 3 / 191 A 0l drlpy g A o ds| 7,
k=4 t s ij=1
6 T
< C’ZE/ (T —s)” Z/ A o, dr| AW o, |ds| F,
k=4 t

i,j=1

Hence, using Hypotheses (H1’), (H2), and (H3), we can write
6 k
S <CY (T-t)" = =0T ~1).
k=4
Similarly, we have

|Sa| =

o~

T
E (/ e "B [0k (02, — 95)L(s, X5, MY, v5)| Gi]
t

T v -
3 A e A T )5

ij=1"%

Therefore, the relation

9*BS(t,z,K,0) 1 (0BS(t,x,K,0) 9?BS(t,x, K, o)
0.0k ok O D2 ’

togheter with the hypotheses of the Proposition, implies

| S5 <CtZZE</ T —s)~ 543 |m'(T, 5)|

i=1 k=3

]—'t> =O(T —1t).
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In a similar way,

T d
E / e "N, L(s, X, My, v5) 0 Z Pj.d+1

t i,j=1
T j i
X / (DAY )Pi a10-dr | ds| Fy

|S3| =

N | =

4 T
< CYE / (T—5)"%|o ijd+1 (/ (DAY )Pzdﬂard?”) ds| Fy
k=3 t i,j=1 s
4 T
< cZ(/ (T—s)—3+2>=0(T—t).
k=3 \’!

Finally, the same arguments give us that
|S4] = O(T —t).

Step 2. 1In order to finish the proof we only need to proceed as in Step 1.
Here we see that

1
T2 - §E (P(t7x:?M?7vt)/ ZAW T s d8|ft> + O(T_ t)7 (12)
t

where P(s, X,, MT vy) = (0, — %)8;( (8336 - 89;) BS(s, X, MT v,). In fact, ap-
plying It6 formula to

e " P (s, Xo, MY v, / Zm (T,r) AW dr)

17



as in the proof of Theorem 2 and taking conditional expectations with respect
to F;, we obtain that
T
5 /t e "I P(s, X, MT ZAW UT, s)ds| F,
= E(P(tXt, t,vt/Zm (T,s)AY ds)f)
1, T d :
4 (/ efr(s t) ’I' - aazv:r)P(Sv Xsa M9T7 US)JS Zl pi,d—&—lA}s/V

1

M“‘

m? (T, r)A)Y “dr | ds| 7,

14

T d .
%E / e " TNOL(02, — 0a)P(s, Xoy MT v) > ALY 'mi (T, 5)

j=1

T d
/ ZAWmJTr r | ds| F;

Jj=1

1 T ‘
—|—§E (/t e "= tap(s X, MT vy) Uszpi,d+1

i,5=1

X DWQ (AWJmJ (T, r)) dr) ds|.7-}>

S

1 T
+§E / 67r(57t)aKP(57Xs7M9T?’US‘)
t

X (/T D}:Vi (ATijj(T, r)) dr) ds

S

m'(T, s)

ft> |

Now, following the same arguments as in Step 1 the proof is complete. m

<.
M=
I

Remark 10 This proof only needs some integrability and regularity conditions.
So, depending on the coefficients of the model (1) and the process K, Hypotheses
(H1’)-(H3) can be substituted by appropiate integrability conditions.

Now we can state the main result of this paper. Towards this end, we need
to state the following assumptions:

(H4) Let i € {1,...,d} and t € [0,7]. Assume that m‘(-,-) has continous paths
and that

7
sup F (asar — Tag
t<OAsSAT<T Qg

.7-}) —0 as T —t, as.
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(H5) Leti € {1,...,

and

sup F (mi(T, s)a, — ———=ajp

t<ONsAT<T

.7:t> —0 as T —t, as.

where, by convention,

d j 2
o
g =07 — 2 th]d_Hm tt—l—Z( )
j=1

such that

sup ‘E ( (D}:Viar — vai+at)

t<s<r<T

as T —t.

K3
d}. There exists an F; -measurable random variable DXV Ta,

a.S.

)

Theorem 11 Consider the model (1). Suppose that Hypotheses (H1’)-(H5)
hold and there exists a positive constant ¢ such that ¢ < K. Then

lim —(zf) = =

ol 1

d i Wi d
_.m"(t,t)D a 1
(z,_1 ODE o S pw %) 1w

Kt ag

i=1

Proof: We can write

(o3

and

0, BS(t,x}, M, I,(z})) =

1

) (@2... o

)2 _
M er(T—1) =0y

V2 ’
« 2 gT T opr—yy L T g _3
o) BS(t, i, M v) = —M/e Ee 5 v, o (T—t)"2

8K <8$ — ;) (821 - 81) BS(tvx;&ksz;T7vt)

1 v (T—t)

C(T— _vi(r=t _1 1
_ ]\@Te (T—t) 27re 5w, 1(T — )72 (MTv2 T t)) .
% t Ut

Then we can write, due to Proposition 9,

0l

TXt(xt)

1 It(Tt) (T—1t) _ IR T d i
-5 s (T —1) 2E(e 8 vt?’/ Uszpi,d—&-lAgV ds|Ft)

t i=1

1 It(”) (T—1t) B (- 1

26 (T -t)"'FE <e 5wy 1 <W>/ ZAW YT, s ds]-"t>
+O(T — t)?
£ 81+ 8y +O(T —t)2.
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By Lemma 8, we know that I;(z})*(T —t) — 0 a.s. as T — t. Then,

d
o1 Ly ey (T W
:}}351**5%13 (T —t) " E(e 5 ; Us;f’i,dHAs ds|Fy)
and
. 1. g, _vET-0 1
i 5y = 2%13{@_’5) Bl (M,W(Tt))

T d )
X / ZAZVZmi(T,s)ds|ft)]. (14)

Now, let us see that

d
. O¢ i
P (Sl + 2a2 ;:1: piar1Di” +at> =0as. (15)

In fact, we can establish

:

d d
. Ot Wit T Ot Wis
%13 <S1 + 22 ;pi,d-i-lDt at) = %lgltE <ATBT + 22 ;pi,d+lDt ay

where )
T—-1))\ 1
Ar :=exp (Ut( )> —
8 V¢
and
1 T (T d W
Br = _7/ / 0rOs Di D." ardrds.
(T -2 )i /s ; o
Consequently

d
. Ot Wit
Hm E <ATBT + %2 ;=1 Pia+1 Dy Ta

= pue((- )
T—t ag

1
= lim U; + — lim Us.
T—t ay T—t

’)

d
1 . Ot ’
ft) T (BT - Tat;pi,dHDtW Tag

ay T—t

.

Applying Schwartz inequality for conditional expectation, it follows that

(o2

20

1
2

(B (B7| 7))

1
2

U <




From the dominated convergence theorem and (H2), it is easy to see that

E((AT—%Y

gives us that (H1’) and (H2) imply that E (B%|F;) is bounded, from where we
deduce that limp_,; U; =
Observe that we also have,

.7:25) tends to zero a.s. as T — t, and a simple calculation

TsQr i o i
el = E (/ / ( ;}2 Zpi,d+1DgV Qr — iZPi,d+1Dy +at> drds ]—"t>|
t s t . -
: (/ / (U . > sz a1 DY apdrds f)
T . i
Jr( B Zpi7d+1/ / (DZV ar*DXV +le,) Fi | drds
i=1 t s
Using Hypotheses (H1’) and (H2) we obtain that

drds

Uz 1| < (/ / USST — ? .7:t>
Vi Q¢
C T T o
< b sy — — 2 Fi
T (T-t)? </t /5 Tl T g '
S\ ] e ara )
FE Oslp — ———— azdf Fi
(T —1)? <t s a(T —1) J, ’ '
C T T T
—_ E
) [
which tends to zero, a.s. as T — ¢, because of Hypothesis (H4). Similarly,

Zpl d+1/ / T—vai+at>‘ft> drds|,

which tends to zero by Hypothesis (H5). Thus we have proved (15) is true.
On the other hand, by (14) we can write

drds

drds

OsQp —

t

) dfdrds,

|Uz2| <

d
1 . i
li - — ! DYt =1lmFE | ArB D +
Jim (Sg K ;Zlm (t,t) " at> Jim < 7B — 2Kta2 ig: m'(t,t) az

but now

.

V2T —t 1

and
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1 T T d . W
Br :vtz(T_t)g/t /5 ar;m(T,S)Ds ardrds.

Finally, proceeding similarly as before, we have (14) yields that Sy converges to
S, mi,)DY ta

K7 *, which, together with (15), implies that (13) is satisfied. m

Remark 12 From (13) and by using Taylor expansions we see that for small
times to maturities and for near-the-money options, the following approximation
for the implied volatility holds

d

; o 1 (Sl mi D e, L)1 )
It(Xt) = GJ?+§ ( 1 K, L — 0¢ ;pi,d_t,_lDZV +at g% (Xt — I’t) .

and
BS(t, Xy, M A/ I(Xy))

becomes a closed-form second-order approximation for the option price. In the
following Section we will check the goodness of this approximation for two-assets
and tree-assets spread options.

6 Application to the study of spread options

This section is devoted to apply the previous results to study the implied volatil-
ity behaviour for spread options. This study will allow us to easily improve, for
short-time spread options, Kirk’s formula and its three-assets extension pro-
posed in Alos, Eydeland and Laurence (2011).

6.1 Two-assets spread options

Consider an spread option with K = S/T + K as in Example 4. For the sake
of simplicity we will assume the interest rate r = 0 and we use the notation
p1,2 = p- Then it is easy to see that

(S))°
(Si+ K)*

Sy 2
a? = 0% — 2poo’ 5 —:K + (o)

Therefore, for 8 < t,

K 2 S’ K
—2p00 ———— +2(d’ ( ¢ ) 'S,
( e PO\ R ) w7

2 Sy SIK
2 (0" <—pa+a’ (sg J:K>) G j_ e

w 2
Dy a;
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Hence, we deduce that
/ D}V a?
DWCLt _ DW a2 — 6 %t
0 0 t 2\/@

1 S! 2 SIK
S )) o)
ag‘( ’ (SHK ) S R?

Then, from Theorem 11, we get

oL, ,
%Ttaxt(t)
1 L, ¢ D}
_ L(m@H ) Dra
2 Kt ay

- 5 (53%) ) W:—g)?’ e

Remark 13 Notice that the above quantity is always positive. In the following
examples we will study its behaviour as a function of K and p.

Example 14 In Figure 1 we plot limp_,; g—;{tt(xf) as a function of K for p=0.9
(solid) and p =1 (dash), and for Sy = 100,0 = 0.5 and o’ = 0.4. We can observe
the limit skew limp_; g—)lgt(xf) is zero in the case K = 0. This was expected from
Ezxample 4, where we found that in this case the implied volatility is constant,
and then g)lgt (z7) = 0. Notice also that, even this skew increases with K, this

increment seems to be clearly bigger in the completely correlated case p = 1.

. . A 0.02 T
implied volatiltiy skew it
1 s
7/
s/
001 v
/
/
/
0.00 ¥—r——————"TFT""T + |

0 1 2 3 4 K5
ol

Figure 1: limy_; 55 (27) as a function of K for p = 0.9 (solid)
and p =1 (dash). Here 0 = 0.5,¢0" = 0.4.

Example 15 In Figure 2 we plot limp_; %(m:) as a function of p for K =5
(solid) and K = 10 (dash), and for the same parameter values of Fig.1. We
can observe the limit skew limp_,, da—;(’r(zj{) has its mazimum at the completely

23



correlated case p = 1. Notice that this means that the constant volatility ap-
prozimation given by Kirk’s formula is expected to be less accurate in this case.
This fact is consistent with numerical empirical evidence (see for example Baeva
(2011) and Borovkova (2007)).

implied volatility skew °® T
0.05
004 T [
0.03 T
0.02 T
0.01 T

t t t t t — =
-10 -08 -06 -04 -02 0.0 0.2 04 0.6 0.8 réo

Figure 2: limp_,; g—;gt(xf) as a function of p for K =5 (solid) and K =10
(dash). Here o = 0.5,0" = 0.4.

Example 16 In Figure 3 we plot limp_,; g—;gf(x’;) as a function of p and K for
the same parameter values of Fig.1 and Fig. 2. Notice that this limit skew is
substantially bigger near the case p = 1.

0.04

implied volatility skewy,

000 5
10
K 0 -1 correlation
Figure 3: limp_,; g)l(tt (x7) as a function of p and K.

6.1.1 An improvement of Kirk’s formula

Kirk’s approximation for spread option prices is given by

BS(t, Xy, M, \/a?).

It is well-known that Kirk’s formula is a very accurate approximation given its
simplicity (see for example Baeva (2011), Bjerksund and Stensland (2011) or
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Carmona and Durrleman (2011)). Nevertheless, it is well-known it may fail
for highly correlated assets (see for example Baeva (2011)). The above results
give an analytical reason for this phenomenon. In fact, notice that \/E (the
volatility parameter in the Kirk’s formula) is a process that does not depend
on X;. Then, Kirk’s formula may not reproduce the short-time volatility skews
that we have seen appear in the highly correlated case (p close to 1) and we can
expect it can fail when p is near to one.
In this case we have

L(X,) = \/£+% <a' (s;i%) - p0>2 (\/;%)3 (') (Sfﬁ()? (X, —a7).

And now we can consider the modified Kirk approximation given by

BS(t, Xy, M I,(X,)).

In the following example we will check numerically the goodness-of-fit of this
approximation.

Example 17 In the following table we can compare the prices given by Kirk’s
formula, by the modified Kirk’s formula and by the Monte Carlo simulations,
for different values for K and p and for the same parameters of Example 14.
Here T —t = 0.5. Notice that the modified Kirk’s formula is extremely accurate
and it reduces significatively the error of approximation, specially in the case of
highly correlated assets.

K/p 0.60 0.98 0.99 0.999

Monte-Carlo 9, 4564 2,1890 1, 8386 1,5011
Kirk 9,4176 92,2159 1,8775 1,5420
5 error (Kirk) —-0,410% 1,230% 2,117% 2,725%
Modified Kirk 9,4255 2,2067 1, 8309 1,4829
error (Modified Kirk) -0,327% 0,809% 0,804% 0,414%
Monte-Carlo 7,6404 1,2714 1,0207 0,7934
Kirk 7,5988 1,3326 1,1015 0, 8848

10 error (Kirk) —0,545% | 4.814% | 7,913% | 11,516%
Modified Kirk 7,6060 1, 2888 1,0367 0,8210

error (Modified Kirk) —0,451% 1,368% 1,660% 1,400%

6.2 The three-assets case

Consider a random strike of the form Kr = Sk + S% + K as in Example 6.
Using the same arguments as in the two-asset case, we obtain the following
approximation for the implied volatility

jt(Xt) = (l%
1 (ml(t,t)Dyll+at + mz(t,t)D?/Q"'at

2 K,

1 2 1 .
-0 (PlgD;/V Ty + pys DY +at)> 2 (Xe — 7).
t
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Here a? is as in Example 6,

m'(t,t) = Sfo1 + Sioap, 5, mP(t,t) = Sfoay/1—pi,.

Also
Wl
Dz/Vl-i-af _ Dt +a%
vai
_ L DVt — DVt
= \/CTQ P1,30010 G — P33002L
t
+ ofaDgA/waJrglazpm (aD;’V“berbDF“*a) +a§bD24/1+b)
and
W2
DW2+at _ Dt +a%
K = =ttt
vai
— L (_ DV, — 5 DW+p
= \/{72 P1,30010; G — Pg 300204
t
+ a?aDtWHa +0102p1 2 (aptvv2+b+ bDfV“a) + a%bptwub) ,
where

2
wit (St + K) o1a wi
P (s T P

(Stl + K) ngmb B

b
STrs2rk) 7

and

SlJrK)ba \J1—p?
2 2 ( t 2 P12
DV ra = —aboay /1 —p2,, DV b= =,

' ? Plar (SI+ 52+ K)
In the following example we compare the results given by the approximation
formula proposed in Alos, Eydeland and Laurence with the results obtained by
this modified approximation.

Example 18 Take T' = 0.5, (p; 9,013, P23) = (0.99,0.96,0.94), (01,02,0) =
(0.5,0.45,0.2) (Sé,Sg,K) = (50,2,1). In the following table we compare the
errors given by the extended Kirk’s approximation prices obtained in Alos, Eyde-
land and Laurence (2011) (AEL) with the modified Alos, FEydeland and Laurence
approximation (MAEL) given by

BS(t, Xy, M I,(X,)).

Then benchmarks have been obtained from a Monte Carlo simulation procedure
with 1000,000 trials.

So | Monte Carlo | AEL | Error(AEL) | MAEL | Error(MAEL)
48 0.09256 0.00988 6.7491% 0.009 14 —1.2342%
50 0.34575 0.35534 | 2.7737% | 0.34597 0.0636%
52 0.93606 0.94411 0.8600% 0.939 68 0.386 7%

Notice that the error is again significatively reduced.
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7

Conclusions

By means of Malliavin calculus we have developed a general technique to find
closed-form approximation formulas for short-time random strike options. The
obtained approximations are simple and easy to apply and the numerical analy-
sis show they are extremely accurate even in the case when some other ap-
proaches (as the case of Kirk’s formula and the decomposition method presented
in Alos, Eydeland and Laurence (2011)) fail.
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