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Abstract

Using a suitable Hull and White type formula we develop a methodology to obtain a
second order approximation to the implied volatility for very short maturities. Using this
approximation we accurately calibrate the full set of parameters of the Heston model. One
of the reasons that makes our calibration for short maturities so accurate is that we also
take into account the term-structure for large maturities. We may say that calibration is
not “memoryless,” in the sense that the option’s behavior far away from maturity does
influence calibration when the option gets close to expiration. Our results provide a way
to perform a quick calibration of a closed-form approximation to vanilla options that can
then be used to price exotic derivatives. The methodology is simple, accurate, fast, and
it requires a minimal computational cost.

JEL Classification: G13
Mathematics Subject Classification (2000): 91B28, 91B70

1 Introduction

Although the assumption of constant volatility lends robustness to the Black-Scholes model (see
El Karoui, Jeanblanc-Pique and Shreve (1998)), in the last decades the need for more general
non-constant volatility models has been the driving force behind numerous works in financial
mathematics. One of the reasons behind this driving force is the fact that prices of exotic
derivatives based upon the Black-Scholes formula are often inaccurate, as exotic contracts are
typically more sensitive to the volatility than vanilla options. Thus, the need was felt for
models that could account for the smiles or skews that were often observed in the market.

∗Supported by grants ECO2011-288755 and MEC FEDER MTM 2009-08869.
†Supported by grant ECO2009-08302-E.
‡Supported by grants MEC FEDER MTM 2009-08869 and 2009-07203.
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One approach to solving this problem has been to let the volatility of the underlying ran-
domly fluctuate according to one or more (correlated) Brownian motions. This approach,
started by Hull and White (1987), Wiggins (1987), Stein and Stein (1991) and Heston (1993),
has proved to be successful and has evolved over time into a variety of research lines.

A drawback of stochastic volatility models is their increased mathematical complexity,
which translates into the difficulty of obtaining closed-form solutions. This, in turn, makes
calibration computationally intensive and slow. A recent trend in the literature has been the
development of closed-form approximation formulas for option prices (see Fouque, Papanicolau
and Sircar (2000), Fouque, Papanicolau, Sircar and Sølna (2003), Hagan, Kumar, Lesniewski
and Woodward (2008), DeSantiago, Fouque and Sølna (2008), Antonelli and Scarlatti (2008),
Benhamou, Gobet and Miri (2009, 2010a and 2010b), Fouque, Papanicolau, Sircar and Sølna
(2011), or Alòs (2012)). The main advantage of closed-form approximations is that they allow
for fast calibration and provide a better understanding of the role of model parameters.

Another drawback of stochastic volatility models is that, while they are able to explain
volatility smiles and skews for intermediate and long maturities (three months and more),
calibration when the options are close to maturity remains unsatisfactory. (See, for example,
Janek, Kluge, Weron and Wystup (2010)).

The main purpose of this paper is to present an accurate calibration procedure for very
short maturities that requires a minimal computational cost. In Fouque, Papanicolau and
Sircar (2000) the authors developed an easy way of identifying the group parameters that
are needed for pricing and hedging European-type securities, namely, the average volatility
together with the slope and intercept of the implied volatility curve (as a function of the log-
moneyness-to-maturity ratio). We build on this way of identifying the parameters, although
our approach is slightly different. By applying the results in Alòs (2012) to the Heston model,
we deduce a second-order approximation formula for the implied volatility. From the analysis
of this approximation we derive valuable information regarding the limiting behavior of the
implied volatility. Then, using the term-structure for at-the-money options, we are able to
accurately calibrate all model parameters (including the mean-reversion term).

This paper is organized as follows. In Section 2 we briefly describe the model’s framework
and introduce the basic notation. In Section 3 we present a second-order approximation to the
Black-Scholes price based on the results of Alòs (2012). As calibration is typically performed on
implied volatilities, in Section 4 we compute a second-order approximation to this magnitude.
In Section 5 we present numerical examples in which the parameters are calibrated for the
uncorrelated and the correlated cases, and their accuracy is tested on simulated data. In
Section 6 our results are compared with those obtained with another calibration procedure
(derived by a different method) and conclusions are drawn.

2 Preliminaries and Framework

We consider the following stochastic volatility model for the stock price under a risk neutral
probability P chosen by the market:

dSt = rStdt+ σtSt

(
ρdWt +

√
1− ρ2dBt

)
, t ∈ [0, T ], (1)

where r ≥ 0 is the constant instantaneous interest rate, W and B are independent standard
Brownian motions defined on a complete probability space (Ω,F , P ), and ρ ∈ [−1, 1]. We will
assume that the volatility process σ follows a Heston model (see Heston (1993)), with dynamics
governed by

dσ2
t = κ(θ − σ2

t )dt+ ν
√

σ2
t dWt, (2)

where κ, θ, ν are positive constants satisfying the condition 2κθ
ν2 ≥ 1.

We denote by FW and FB the filtrations generated by W and B, respectively, and we
define Ft := FW

t ∨FB
t . We denote Xt := lnSt and Et := E(·|Ft). With this notation, the price

at time t of a European call with strike K is given by

Vt = e−r(T−t)Et[(e
XT −K)+]. (3)
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In what follows we will make use of the following notation:

• vt :=
√

1
T−t

∫ T

t
Et(σ2

s)ds will denote the future average volatility.

• Mt :=
∫ T

0
Et(σ

2
s)ds. Notice that v2t = 1

T−t (Mt −
∫ t

0
σ2
sds).

• BS(t, x, σ) will denote the Black-Scholes price at time t of a European call option with
constant volatility σ, current log-stock price x, time to maturity T − t, strike price K
and interest rate r. We know that in this case

BS(t, x, σ) = exΦ(d+)−Ke−r(T−t)Φ(d−), (4)

where Φ denotes the cumulative probability function of the standard normal law and

d± :=
x− x∗

t

σ
√
T − t

± σ

2

√
T − t,

with x∗
t := lnK − r(T − t).

• In order to simplify notation, we define

H(t, x, σ) = (∂3
xxx − ∂2

xx)BS(t, x, σ)

=
ex

σ
√
2π(T − t)

exp

(
−
d2+
2

)(
1− d+

σ
√
T − t

)
,

and

K(t, x, σ) = (∂4
xxxx − 2∂3

xxx + ∂2
xx)BS(t, x, σ)

=
ex

σ
√

2π(T − t)
exp

(
−
d2+
2

)
d2+ − σd+

√
T − t− 1

σ2(T − t)
.

3 Second-order Approximation to the Black-Scholes Price

Our calibration method is built upon the following two results, which provide a second-order
approximation to the Black-Scholes price. Both results are proved in Alòs (2012).

Theorem 1 (Decomposition formula) Under conditions of model (1)-(2) we have

Vt = BS(t,Xt, vt)

+
ρ

2
Et

(∫ T

t

e−r(s−t)H(s,Xs, vs)σsd⟨M,W ⟩

)

+
1

8
Et

(∫ T

t

e−r(s−t)K(s,Xs, vs)d⟨M,M⟩

)
.

In order to simplify notation, let α = 2κθ
ν2 , β =

√
2− α, and γ =

√
5
2 − α.

Theorem 2 (Second-order approximation) For the model (1)-(2) and for all t ∈ [0, T ]
we have the following results, where C(T, σt) represents a positive constant, non-decreasing as
a function of T :

• If α ≥ 5
2 , then∣∣∣∣∣Vt −BS (t,Xt; vt)−

ρ

2
H (t,Xt, vt)Et

(∫ T

t

σsd ⟨M,W ⟩s

)

− 1

8
K (t,Xt, vt)Et

(∫ T

t

d ⟨M,M⟩s

)∣∣∣∣∣
≤ C(T, σt)

{
ν2ρ2(T − t)

3
2 + ν3ρ(T − t)2 + ν4(T − t)5/2

}
.
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• If α ∈ [2, 5
2 ), then∣∣∣∣∣Vt −BS (t,Xt; vt)−

ρ

2
H (t,Xt, vt)Et

(∫ T

t

σsd ⟨M,W ⟩s

)

− 1

8
K (t,Xt, vt)Et

(∫ T

t

d ⟨M,M⟩s

)∣∣∣∣∣
≤ C(T, σt)

{
ν2ρ2(T − t)

3
2 + ν3ρ(T − t)2 + ν4−2γ(T − t)5/2−2γ

(
1

1− γ

)1+γ
}
.

• If α ∈ [ 32 , 2), then∣∣∣∣∣Vt −BS (t,Xt; vt)−
ρ

2
H (t,Xt, vt)Et

(∫ T

t

σsd ⟨M,W ⟩s

)

− 1

8
K (t,Xt, vt)Et

(∫ T

t

d ⟨M,M⟩s

)∣∣∣∣∣
≤ C(T, σt)

{
ν2(1−β)

(
1

1− β

)1+β [
ρ2(T − t)

3
2 (1−β) + νρ(T − t)2(1−β)

]
+ ν4−2γ(T − t)5/2−2γ

(
1

1− γ

)1+γ
}
.

Although the precision of the bounds in the last theorem has been proved for the short-
term (short maturities), our numerical examples show that they also hold for the long-term
(see Example 4.6 in Alòs (2012)).

The following results, which are easy to check, are used throughout the paper. In order to
facilitate further references, we state them here as a lemma.

Lemma 3 The following results hold:

1. Et

(∫ T

t
σ2
sds
)

= θ (T − t) +
σ2
t−θ
κ

(
1− e−κ(T−t)

)
.

2. dMt = νσt

(∫ T

t
e−κ(r−t)dr

)
dWt = ν

κ σt

(
1− e−κ(T−t)

)
dWt.

3. E
(∫ T

t
σsd ⟨M,W ⟩s

)
=

ν

κ2

{
θκ (T − t)− 2θ + σ2

t + e−κ(T−t)
(
2θ − σ2

t

)
− κ (T − t) e−κ(T−t)

(
σ2
t − θ

)}
.

4. Et

(∫ T

t
d ⟨M,M⟩s

)
=

ν2

κ2

{
θ (T − t) +

(
σ2
t − θ

)
κ

(
1− e−κ(T−t)

)
−2θ

κ

(
1− e−κ(T−t)

)
− 2

(
σ2
t − θ

)
(T − t) e−κ(T−t)

+
θ

2κ

(
1− e−2κ(T−t)

)
+

(
σ2
t − θ

)
κ

(
e−κ(T−t) − e−2κ(T−t)

)}
.

By substituting the above expressions into the approximation formula provided by Theorem 2,
we will be able to obtain explicit second-order approximations for the implied volatility. This
is what we do in the next section.
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4 Second-order Approximation to the Implied Volatility

The market price at time t of a European call option with strike K and maturity T is an
observable magnitude, which will be referred to as BSobs

t = BSobs(t,K, T ). The implied
volatility is then defined as the value of the volatility parameter that makes the Black-Scholes
price equal to the observed market price. From expression (4) we have that the implied
volatility is the value IV that makes:

BS(t, x, IV ) = BSobs
t .

For simplicity, and without loss of generality, we consider t = 0. As it is done in Alòs (2012),
from the expression in Theorem 2 we deduce a second-order approximation to the implied
volatility, ĨV , which we will write as

ĨV = v0 + I1 + I2,

with

I1 :=
ρ

2v0T

(
1− d+

v0
√
T

)
E

(∫ T

0

σsd ⟨M,W ⟩s

)
and

I2 :=
1

8v0T

(
d2+
v20T

− d+

v0
√
T

− 1

v20T

)
E

(∫ T

0

d ⟨M,M⟩s

)
.

The key element that will allow us to calibrate the model’s parameters is the limiting
behavior of the implied volatility, both close and far away from maturity, together with the
term structure for large maturities. We therefore start this section by studying the limiting
behavior of ĨV . Given that

v0 =

√
θ +

σ2
0 − θ

κT
(1− e−κT ) ,

it is clear that v0 → σ0 when T → 0, and v0 →
√
θ when T → ∞.

As all the results in this section refer to the model (1)-(2), we will only make an explicit
reference in the first lemma. From then on, reference to the model will be implicitly assumed.

4.1 Limiting Behavior of I1

In this section we look at the limit behavior of I1. We start by computing the limit of I1 as
the time to maturity goes to 0.

Lemma 4 Assume the model (1)-(2). Then,

lim
T→0

I1 = − ρν

4σ0
(x− lnK) .

Proof. Replacing d+ by its expression we have:

lim
T→0

I1 = lim
T→0

ρ

2v0T

(
1− d+

v0
√
T

)
E

(∫ T

0

σsd ⟨M,W ⟩s

)

= lim
T→0

ρ

2v0T

(
1

2
− r

v20

)
E

(∫ T

0

σsd ⟨M,W ⟩s

)

− lim
T→0

ρ(x− lnK)

2v30T
2

E

(∫ T

0

σsd ⟨M,W ⟩s

)
.
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As

E

(∫ T

0

σsd ⟨M,W ⟩s

)
= ν

∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)
ds

= ν

∫ T

0

(∫ r

0

e−κ(r−s)E
(
σ2
s

)
ds

)
dr,

we have

lim
T→0

I1 = lim
T→0

ρν

2v0T

(
1

2
− r

v20

)∫ T

0

(∫ r

0

e−κ(r−s)E
(
σ2
s

)
ds

)
dr

− lim
T→0

ρν(x− lnK)

2v30T
2

∫ T

0

(∫ r

0

e−κ(r−s)E
(
σ2
s

)
ds

)
dr.

Applying L’Hôpital rule, it follows that

lim
T→0

I1 = lim
T→0

ρν

2v0

(
1

2
− r

v20

)(∫ T

0

e−κ(T−s)E
(
σ2
s

)
ds

)

− lim
T→0

ρν(x− lnK)

4v30T

(∫ T

0

e−κ(T−s)E
(
σ2
s

)
ds

)
.

The first limit in the right hand side is clearly 0, and the second one is equal to

− lim
T→0

ρν(x− lnK)

4v30

(
E
(
σ2
T

)
− κe−κT

∫ T

0

E
(
σ2
s

)
eκsds

)
.

If we now let T → 0, the second term of the last equation converges to 0, while the first one
converges to

− ρν

4σ0
(x− lnK) , (5)

as we wanted to prove.

In the following lemma we explore the behavior of I1 when the option is far away from
maturity.

Lemma 5 As T increases, the following result holds:

lim
T→∞

I1 =
ρν

2κ

(√
θ

2
− r√

θ

)
.

Proof. Using the previous computations, we have:

lim
T→∞

I1 = lim
T→∞

ρ

2v0T

(
1− d+

v0
√
T

)
E

(∫ T

0

σsd ⟨M,W ⟩s

)

= lim
T→∞

ρν

2v0

(
1

2
− r

v20

)
e−κT

∫ T

0

E
(
σ2
s

)
eκsds

− lim
T→∞

ρν(x− lnK)

4v30
E
(
σ2
T

)
+ lim

T→∞

ρν(x− lnK)

4v30
κe−κT

∫ T

0

E
(
σ2
s

)
eκsds.

It is easy to see that, as T → ∞, e−κT
∫ T

0
E
(
σ2
s

)
eκsds converges to θ

κ and E
(
σ2
T

)
converges

to θ. Therefore, the second and third terms in the last expression vanish and the first one
converges to:

ρν

2
√
θ

(
1

2
− r

θ

)
θ

κ
=

ρν

2κ

(√
θ

2
− r√

θ

)
,

and the proof is now complete.
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4.2 Limiting Behavior of I2

We now look at the behavior of I2, the second-order term of the implied volatility approxima-
tion. We start by computing its limit as the time to maturity goes to zero.

Lemma 6 As we get close to maturity, we have:

lim
T→0

I2 =
ν2

24σ3
0

(x− lnK)2.

Proof. We need to compute:

lim
T→0

I2 = lim
T→0

1

8v0T

[
d2+
v20T

− d+

v0
√
T

− 1

v20T

]
E

(∫ T

0

d ⟨M,M⟩s

)
. (6)

On one hand, we have

1

8v0T

[
d2+
v20T

− d+

v0
√
T

− 1

v20T

]
=

1

8v30T
2

(
d2+ − v0

√
Td+ − 1

)
=

1

8v30T
2

[
(x− lnK)2

v20T
+

r2T

v20
− v20T

4
− 1

]
.

On the other hand,

E

(∫ T

0

d ⟨M,M⟩s

)
=

ν2

κ2

∫ T

0

E(σ2
s)
(
1− e−κ(T−s)

)2
ds.

Observe that ∣∣∣∣∣E
(∫ T

0

d ⟨M,M⟩s

)∣∣∣∣∣ ≤ CT,

where C = C(ν, κ, σ0, θ) is a constant. It follows that the limit in (6) is equivalent to:

lim
T→0

ν2

8v50T
3

∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)2

ds

 (x− lnK)
2
.

Aplying L’Hôpital rule,

lim
T→0

I2 = lim
T→0

ν2

12v50T
2

(∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)
e−κ(T−s)ds

)
(x− lnK)2

= lim
T→0

ν2

12v50T
2

(∫ T

0

∫ r

0

E
(
σ2
s

)
e−κ(r−s)e−κ(T−s)dsdr

)
(x− lnK)2

= lim
T→0

ν2

24Tv50

(∫ T

0

E
(
σ2
s

)
e−2κ(T−s)ds

)
(x− lnK)2

= lim
T→0

ν2

24v50

(
E(σ2

T )− 2κe−2κT

∫ T

0

E(σ2
s)e

2κsds

)
(x− lnK)2

=
ν2

24σ3
0

(x− lnK)2, (7)

which concludes the proof.

The next lemma deals with the behavior of I2 as the time to maturity goes to infinity.
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Lemma 7 As T increases, the following result holds:

lim
T→∞

I2 =
ν2

√
θ

8κ2

(
r2

θ2
− 1

4

)
.

Proof. We need to compute

lim
T→∞

1

8v0T

[
d2+
v20T

− d+

v0
√
T

− 1

v20T

]
E

(∫ T

0

d ⟨M,M⟩s

)
,

or, equivalently,

lim
T→∞

1

8v30

(
(x− lnK)2

v20T
3

+
r2

v20T
− v20

4T
− 1

T 2

)
E

(∫ T

0

d ⟨M,M⟩s

)
.

Given that

E

(∫ T

0

d ⟨M,M⟩s

)
≤ CT,

the only limit that is not zero as T → ∞ is

lim
T→∞

1

8v0

(
r2

v40
− 1

4

)
1

T
E

(∫ T

0

d ⟨M,M⟩s

)

= lim
T→∞

ν2

8v0κ2

(
r2

v40
− 1

4

)
1

T

∫ T

0

E(σ2
s)
(
1− e−κ(T−s)

)2
ds.

Applying L’Hôpital rule, the above limit is equivalent to

lim
T→∞

ν2

4v0κ

(
r2

v40
− 1

4

)(
e−κT

∫ T

0

E(σ2
s)e

κsds− e−2κT

∫ T

0

E(σ2
s)e

2κsds

)
,

which is the same as

lim
T→∞

ν2

4v0κ

(
r2

v40
− 1

4

)∫ T

0

(
θ +

(
σ2
0 − θ

)
e−κs

) (
e−κ(T−s) − e−2κ(T−s)

)
ds.

It is straightforward to see that the integral converges to θ
2κ . We therefore have that

lim
T→∞

I2 =
ν2

√
θ

8κ2

(
r2

θ2
− 1

4

)
,

and the proof is complete.

Remark 8 When the option is close to maturity (T → 0), the above results allow us to write
the second-order approximation to the implied volatility as

ÎV (0) = σ0 − ρν

4σ0
(x− lnK) +

ν2

24σ3
0

(x− lnK)2. (8)

Remark 9 When the option is far away from maturity (T → ∞), the second-order approxi-
mation to the implied volatility becomes

ÎV (∞) = σ0 +
ρν

2κ

(√
θ

2
− r√

θ

)
+

ν2
√
θ

8κ2

(
r2

θ2
− 1

4

)
. (9)
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4.3 Derivatives of ĨV when the option is at-the-money

In order to calibrate the model’s parameters we will use the implied volatility’s term structure.
In particular, from the available data we will need to estimate the implied volatility’s intercept
and slope, and then compute the parameter values that better fit such magnitudes. In this
section we therefore derive expressions for the derivatives of ĨV at T = 0 and at T = ∞.

When the option is at-the-money, then x = x∗
0 and d+ = v0

2

√
T . The expression for ĨV thus

becomes:

ĨV (T ) = v0 +
ρ

4v0T
E

(∫ T

0

σsd ⟨M,W ⟩s

)
− 1

8v0T

(
1

4
+

1

v20T

)
E

(∫ T

0

d ⟨M,M⟩s

)
. (10)

From this expression we can prove the following result.

Lemma 10 The derivative of the approximation to the implied volatility at T = 0 is equal to:

∂

∂T
ĨV (0) =

3σ2
0ρν − 6κ(σ2

0 − θ)− ν2

24σ0
.

Proof. Using the results from Lemma 3 it is easy to check that ĨV (0) = σ0. The derivative

of ĨV with respect to T , at T = 0, is therefore equal to:

lim
T→0

ĨV (T )− σ0

T
= lim

T→0

v0 − σ0

T

+ lim
T→0

ρ

4v0T 2
E

(∫ T

0

σsd ⟨M,W ⟩s

)

− lim
T→0

1

8v0T 2

(
1

4
+

1

v20T

)
E

(∫ T

0

d ⟨M,M⟩s

)
. (11)

For the first term, we have

lim
T→0

v0 − σ0

T
= lim

T→0

√
1
T

∫ T

0
E (σ2

s) ds− σ0

T

= lim
T→0

− 1
T 2

∫ T

0
E
(
σ2
s

)
ds− 1

T E
(
σ2
T

)
2
√

1
T

∫ T

0
E (σ2

s) ds

= lim
T→0

− 1
T 2

(∫ T

0
E
(
σ2
s

)
ds− TE

(
σ2
T

))
2
√

1
T

∫ T

0
E (σ2

s) ds

= lim
T→0

− 1

2σ0T 2

(∫ T

0

E
(
σ2
s

)
ds− TE

(
σ2
T

))

= lim
T→0

− 1

2σ0T 2

(∫ T

0

E
(
σ2
s

)
ds− T

(
θ + (σ2

0 − θ)e−κT
))

= lim
T→0

− 1

4σ0T

{
E
(
σ2
T

)
−
(
θ +

(
σ2
0 − θ

)
e−κT

)
+ κT

(
σ2
0 − θ

)
e−κT

}
= −

κ
(
σ2
0 − θ

)
4σ0

9



The second term of equation (11) is equal to:

lim
T→0

ρ

4v0T 2
E

(∫ T

0

σsd ⟨M,W ⟩s

)
=

ρν

4σ0
lim
T→0

1

T 2

∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)
ds

=
ρν

4σ0
lim
T→0

1

T 2

∫ T

0

(∫ r

0

E
(
σ2
s

)
e−κ(r−s)ds

)
dr

=
ρν

8σ0
lim
T→0

1

T

∫ T

0

E
(
σ2
s

)
e−κ(T−s)ds

=
ρνσ0

8
.

Finally, the limit in the third term of expression (11) gives us:

lim
T→0

1

8v0T 2

(
1

4
+

1

v20T

)
E

(∫ T

0

d ⟨M,M⟩s

)

=
1

8v0
lim
T→0

1

T 2

(
1

4
+

1

v20T

)
E

(∫ T

0

d ⟨M,M⟩s

)

=
ν2

8v0
lim
T→0

1

T 2

(
1

4
+

1

v20T

)∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)2

ds

=
ν2

8v0
lim
T→0

1

T 2

1

v20T

∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)2

ds

=
ν2

8v30
lim
T→0

1

T 3

∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)2

ds.

Applying now L’Hôpital, the above limit is equal to:

ν2

12v30
lim
T→0

1

T 2

∫ T

0

E
(
σ2
s

)(∫ T

s

e−κ(r−s)dr

)
e−κ(T−s)ds

=
ν2

12v30
lim
T→0

1

T 2

∫ T

0

(∫ r

0

E
(
σ2
s

)
e−κ(r−s)e−κ(T−s)ds

)
dr

=
ν2

24v30
lim
T→0

1

T

(∫ T

0

E
(
σ2
s

)
e−2κ(T−s)ds

)

=
ν2

24v30
lim
T→0

E
(
σ2
T

)
− 2κe−2κT

∫ T

0

E(σ2
s)e

2κsds

=
ν2

24σ0
,

which completes the proof.

Remark 11 When the option is at-the-money, the above result allows us to write the Taylor
expansion of ĨV near T = 0 as:

ĨV (T ) ≈ σ0 +
3σ2

0ρν − 6κ(σ2
0 − θ)− ν2

24σ0
T. (12)

We now compute the derivative of ĨV when the option is far away from maturity. In order
to prove the next lemma, note that

lim
T→∞

ĨV (T ) =
√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)
,

which follows easily from (10).

10



Lemma 12 As T becomes large (i.e., as the time to maturity increases), the following result
holds:

lim
T→∞

[
ĨV −

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)]
T =

σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

.

Proof. Note that

lim
T→∞

[
ĨV −

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)]
T

= lim
T→∞

{
v0 −

√
θ +

ρ

4v0T
E

(∫ T

0

σsd ⟨M,W ⟩s

)
− νρ

√
θ

4κ

− 1

8v0T

(
1

4
+

1

v20T

)
E

(∫ T

0

d ⟨M,M⟩s

)
+

ν2
√
θ

32κ2

}
T. (13)

Applying L’Hôpital, the first two terms in the limit above give us:

lim
T→∞

(
v0 −

√
θ
)
T = lim

T→∞

√
1
T

∫ T

0
E (σ2

s) ds−
√
θ

1/T

= lim
T→∞

1
T 2

{∫ T

0
E
(
σ2
s

)
ds− TE

(
σ2
T

)}
2v0 (1/T 2)

= lim
T→∞

1

2v0

(
θT +

σ2
0 − θ

κ
(1− e−κT )− Tθ − T

(
σ2
0 − θ

)
e−κT

)
=

σ2
0 − θ

2κ
√
θ
.

We now consider the next two terms in the right-hand side of expression (13). Using Lemma 3
it follows that

lim
T→∞

{
ρ

4v0
E

(∫ T

0

σsd ⟨M,W ⟩s

)
− νρ

√
θ

4κ
T

}

= lim
T→∞

{
νρ

4κ2v0

(
κθT − 2θ + σ2

0 +
[
2θ − σ2

0 − κT (σ2
0 − θ)

]
e−κT

)
− νρ

√
θ

4κ
T

}
=

νρ

4κ2
√
θ

(
σ2
0 − 2θ

)
.

Applying Lemma 3 again, the last two terms in the right-hand side of (13) give us:

lim
T→∞

{
− 1

8v0

(
1

4
+

1

v20T

)
E

(∫ T

0

d ⟨M,M⟩s

)
+

ν2
√
θ

32κ2
T

}

= lim
T→∞

{
− 1

32v0
E

(∫ T

0

d ⟨M,M⟩s

)
+

ν2
√
θ

32κ2
T − 1

8v30T
E

(∫ T

0

d ⟨M,M⟩s

)}

= lim
T→∞

{
− ν2

32v0κ2

[
θT +

σ2
0 − θ

κ
− 2θ

κ
+

θ

2κ

]
+

ν2
√
θ

32κ2
T − ν2

8v30κ
2
θ

}

= − ν2

32
√
θκ3

(
σ2
0 −

5

2
θ + 4κ

)
.

Putting these limits together, we get that

lim
T→∞

[
ĨV −

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)]
T =

σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

,

which is the desired result.
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Remark 13 The above result allows us to conclude that, for an at-the-money European call
option which is far away from maturity, the following approximation holds:

ĨV (T ) ≈
√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)
+

(
σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

)
1

T
. (14)

5 Calibration

In this section we test the accuracy of our results by calibrating the model from simulated data.
Let S0 = 100, σ0 = 0.2, κ = 3, ν = 0.3, ρ = 0, r = 0, and θ = 0.09. From the model equations,
we first generate option prices for small and large maturities and we then invert them in order
to get the corresponding (at-the-money) implied volatilities. When we say “short maturities”
we roughly refer to T = 0.01 to 0.05 years, while “large maturities” means T = 3 to 4 years.

Before moving on to numerical examples, we offer a bird’s-eye view of the calibration
procedure. The first step is to plot the implied volatilities for short maturities as a function
of T and to fit a curve to the data. From expression (12) we obtain σ0 as the intercept of the
fitted equation. The second step, which also follows from (12), consists of making

−κ
(
σ2
0 − θ

)
4σ0

+
ρνσ0

8
− ν2

24σ0

equal to the slope of the regression curve.
The third step is to plot the implied volatilities for short maturities as a function of the

log-moneyness (x − lnK) and fit a curve to the data. The product νρ is obtained, according
to (8), from the coefficient of the linear term in the regression equation.

The fourth step consists of plotting the implied volatilities as a function of 1/T for large
values of T and fitting a curve to the data. Using expression (14), we then make

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)
and

σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

equal to the intercept and the slope, respectively, of the regression curve.
The final step is to solve the system of equations generated in the second and fourth

steps, using the information gathered in the first and third steps. We consider two cases, the
uncorrelated one (ρ = 0) and the correlated one (ρ ̸= 0).

5.1 The uncorrelated case (ρ = 0)

In Figure 1 we plot the different implied volatilities obtained from the simulated prices against
the corresponding maturities (expressed in years). By running a regression, we get that the
intercept is 0.2 and the slope of the linear term is 0.1676.

When the option is at-the-money, the implied volatility at T = 0 is σ0. Using a hat to
designate calibrated magnitudes, we thus write σ̂0 = 0.2. From expression (12) it follows that

3σ2
0ρν − 6κ(σ2

0 − θ)− ν2

24σ0
≈ 0.1676,

or, equivalently,
0.12ρν − 6κ(0.04− θ)− ν2 ≈ 0.80448.

We now look at the implied volatility as a function of the log-moneyness (x − lnK). It
follows from expressions (5) and (7) that, for short maturities, the implied volatility tends to

σ0 −
νρ

4σ0
(x− lnK) +

ν2

24σ3
0

(x− lnK)2.

12
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Figure 1: Implied Volatility when the at-the-money option is close to maturity. (In this and the

remaining figures, time to maturity is expressed in years).

In Figure 2 we plot the implied volatilities against the log-moneyness. By running a re-
gression, we get that the coefficient of the first order term is zero (4 × 10−7), which gives
νρ = 0.

Note that the regression coefficient of the second order term is 0.443, from where one could
be tempted to conclude that ν̂ =

√
24 x 0.443 x 0.23 = 0.29164. However, calibration of the

second-order coefficient from the above equation can be unstable, for it depends on the correct
estimation of the implied volatility for strikes that are out-of-the-money. We therefore consider
0.29164 only as a rough approximation to the value of ν. We will see below that a more accurate
calibration of this parameter requires the use of the term-structure for long maturities.

y = 0,443x2 ! 4E!07x + 0,2017

0,20164

0,20172

0,2018

0,20188

!0,03 !0,02 !0,01 0 0,01 0,02 0,03

Im
p
li
e
d

 v
o
la
ti
li
ty

Log!moneyness

Figure 2: Implied Volatility as a function of log-moneyness for short maturities.

The next step is to gather additional information from the implied volatility. We know
from (14) that, for large values of T , the implied volatility is approximately equal to:

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)
+

(
σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

)
1

T
.
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By performing a regression on the data from Figure 3, we get that the intercept is

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)
≈ 0.2998 ,

while the slope is

σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

≈ −0.0314.

y = !0,0314x + 0,2998

R² = 1
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o
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lit
y
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Figure 3: Implied Volatility as a function of 1/T .

Putting everything together, we have the following system:

−6κ(0.04− θ)− ν2 ≈ 0.80448√
θ
(
1− ν2

32κ2

)
≈ 0.2998

0.04−θ
2κ

√
θ

− ν2
0.04− 5

2 θ+4κ

32
√
θκ3

≈ −0.0314

 .

Solving the system we find that the calibrated values of the parameters are as in the table
below (where the error is expressed in absolute value).

parameter real calibrated error
σ0 0.2 0.2 0%
ν 0.3 0.3020 0.67%
κ 3 3.0439 1.46%
θ 0.09 0.0899 0.07%

5.2 The correlated case (ρ ̸= 0)

Recall that when the option is at-the-money, the implied volatility at T = 0 is σ0. We also
have from Lemma 10 that the derivative of the volatility at T = 0 is

−κ
(
σ2
0 − θ

)
4σ0

+
ρνσ0

8
− ν2

24σ0
.

In Figure 4 we plot the implied volatilities obtained from the simulated prices against the
corresponding maturities, as in the previous example. By running a regression, we see that the
intercept is 0.2, which gives σ̂0 = 0.2.
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Figure 4: Implied Volatility as a function of time to maturity.

As the first-order coefficient is equal to 0.1647, equation (12) allows us to write

−κ
(
σ2
0 − θ

)
4σ0

+
ρνσ0

8
− ν2

24σ0
≈ 0.1647.

We now look at the implied volatility as a function of the log-moneyness (x − lnK). From
expressions (5) and (7) we know that, for short maturities, the implied volatility tends to

σ0 −
νρ

4σ0
(x− lnK) +

ν2

24σ3
0

(x− lnK)2.

y = 0,1831x + 0,2017

R² = 1
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Figure 5: Implied Volatility as a function of log-moneyness for short maturities.

In Figure 5 we plot the implied volatilities against the log-moneyness. Note that the plot
is strongly linear, which makes it difficult to estimate the second-order coefficient. As the
coefficient of the first-order term is equal to 0.1831, it follows from the last equation that
ν̂ρ = −0.14648.

The next step is to gather additional information from the (at-the-money) implied volatility.
We know from (14) that, for large values of T , the implied volatility is approximately equal to:

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)
+

(
σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

)
1

T
.
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By performing a regression on the data from Figure 6, we get that

√
θ

(
1 +

νρ

4κ
− ν2

32κ2

)
≈ 0.2961

σ2
0 − θ

2κ
√
θ

+ νρ
σ2
0 − 2θ

4κ2
√
θ

− ν2
σ2
0 − 5

2θ + 4κ

32
√
θκ3

≈ −0.0303.

y = !0,0303x + 0,2961
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Figure 6: Implied Volatility as a function of 1/T .

Putting everything together, we have the following system:

−0.12 · 0.14624− 6κ (0.04− θ)− ν2 ≈ 0.158112√
θ
(
1− 0.14624

4κ − ν2

32κ2

)
≈ 0.2961

0.04−θ
2κ

√
θ

− 0.14624 0.04−2θ
4κ2

√
θ

− ν2
0.04− 5

2 θ+4κ

32
√
θκ3

≈ −0.0303

 .

Solving it (taking into account that ν̂ρ = −0.14648), we get that the calibrated values provide
a fairly accurate estimate of the real parameter values, as can be seen in the table below (the
errors are expressed in absolute value).

parameter real calibrated error
σ0 0.2 0.2 0%
ν 0.3 0.2997 0.11%
κ 3 3.0023 0.08%
θ 0.09 0.08985 0.17%
ρ −0.5 −0.488 2.24%

6 Summary and Conclusions

In this paper we have presented a calibration procedure for very short maturities in the context
of the Heston model. When applied to simulated data, this method allows us to calibrate the
full set of Heston parameters (σ0, ν, κ, θ, ρ). Our results provide a way to perform a quick and
accurate calibration of a closed-form approximation to the price of vanilla options that can
then be used to price exotic derivatives.

As a way to illustrate the method’s accuracy, we compare our results with those recently
reported by Forde, Jacquier and Lee (2011). Their method, different than ours, is based on
saddlepoint expansions in the complex plane and the properties of holomorphic functions. They
consider a Heston model with parameter values σ0 = 0.2, ν = 0.2, κ = 1.15, θ = 0.04 and
ρ = −0.4. In the table below we present the calibrated values of the parameters obtained with
our method, together with those reported by Forde, Jacquier and Lee (2011).
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our Forde et al.
parameter real calibration error calibration1 error

σ0 0.2 0.2 0% – –
ν 0.2 0.1945 2.75% 0.1907 4.65%
κ 1.15 1.1688 1.63% 1.1040 4.00%
θ 0.04 0.0399 0.25% 0.0410 2.5%
ρ −0.4 −0.4072 1.80% −0.4069 1.73%

One of the reasons that makes our calibration so accurate is the fact that we make use of
the term-structure for large maturities (i.e., the region of the volatility surface that is far away
from maturity), while Forde, Jacquier and Lee (2011) only consider the short term. We may
thus say that calibration is not “memoryless,” in the sense that the option’s behavior far away
from maturity does influence calibration when the option gets close to expiration.

The main traits of the calibration methodology that has been presented in this paper
are simplicity, accuracy, and speed: the procedure is fast to implement and it requires a
minimal computational cost. By including the term-structure for large maturities we are able
to considerably improve its accuracy.
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