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Abstract:  Canonical correspondence analysis and redundancy analysis are two methods of 

constrained ordination regularly used in the analysis of ecological data when several response 

variables (for example, species abundances) are related linearly to several explanatory 

variables (for example, environmental variables, spatial positions of samples). In this report I 

demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear 

relationships can be diagnosed; second, more variance in the responses can be explained; and 

third, in the presence of categorical explanatory variables (for example, years, regions) the 

interpretation of the resulting triplot ordination is unified because all explanatory variables are 

measured at a categorical level. 
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Introduction 

Constrained ordination of species abundances (or biomasses) in a set of samples, in the presence 

of environmental covariates, is routinely performed in ecological studies using canonical 

correspondence analysis (CCA) and redundancy analysis (RDA) (for example, ter Braak and 

Verdonschot, 1995, McCune, 1997, Wagner, 2004, see also Greenacre, 2010: chaps 12 and 15).  

Environmental variables are generally continuous in nature, for example latitude and longitude 

of the sampling points, temperature, depth, concentration of a pollutant, etc., but can also be 

categorical, for example sediment type, season, region, etc.  Continuous variables are usually 

included linearly or in a transformed form, for example logarithmically transformed. Latitude 

and longitude are often included along with their squares and even cubic terms, to explain more 

flexibly the spatial component of variance in the biological data (Borcard, Legendre and 

Drapeau, 1992).   Makarenkov and Legendre (2002) made a general proposal for adding 

polynomial terms of the explanatory variables in CCA and RDA to capture nonlinear effects.  In 

this report we demonstrate an alternative approach of coding continuous variables as fuzzy 

categorical variables.  This approach has several benefits: it leads to (i) a natural accounting for 

non-linear relationships between the biological and environmental variables, (ii) improved 

explained variance and (iii) a unified interpretation of the triplots in constrained ordinations.  

Fuzzy coding 

A continuous variable such as temperature can be recoded into k categories by cutting up the 

range of the variable into k intervals, using k–1 cutpoints, and then assigning the values of the 

variable to one of the categories.  For example, a temperature range of –4C to 5C can be cut 

into k = 3 intervals, using cutpoints –1C and 2C, and an observed value of 2.5C would fall into 

the third category.  Such a categorical variable then generates three dummy (zero/one) variables 
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and this observed value in the third category would be coded as [ 0   0   1 ].    This type of coding 

is called crisp coding because it assigns the value totally to one category.   Clearly, with this type 

of coding, a value of 3.3C, for example, is also coded as [ 0   0   1 ] and is thus indistinguishable 

from the value of 2.5C, leading to a substantial loss of information as a result of the recoding. 

By contrast, fuzzy coding converts the original value into k “pseudo-categorical” values that 

represent the value of the continuous variable uniquely and exactly.  Rather than cutpoints we 

use k membership functions, for example the triangular membership functions depicted in Figure 

1.  To define these functions we need k “hinge points” – for example, in Figure 1 the example of 

k = 3 is illustrated and the hinge points are the minimum value, the median (taken as 1C) and the 

maximum value.  As an example of fuzzy coding a given temperature value of 2.5C, which is 

above the median, this value corresponds to 0 on the first membership function coding the “low” 

category, 0.625 on the second “middle” category and 0.375 on the third “high” category, giving a 

fuzzy coding of [ 0  0.625  0.375 ].   The value 3.3C, slightly higher than 2.5C, has a coding of 

[ 0  0.425  0.575 ].  The three values add up to 1, like the crisp coding, but – unlike the crisp 

coding – can be reverse transformed to recover the original values, as weighted averages of the 

hinge points:  

     (0  –4) + (0.625  1) + (0.375 5) = 2.5          (0  –4) + (0.425  1) + (0.575 5) = 3.3 

 In the following we will also fuzzy code the spatial position of samples, using a fuzzy longitude 

and a fuzzy latitude variable.  For example, suppose the area under consideration lies between 

longitudes 20 and 50, and between latitudes 70 and 75 (Figure 2).  Using the extreme values 

and their midpoints, longitude 35 and latitude 7230 respectively, as hinge points, we can fuzzy 

code the longitude and latitude of a sample, say 4100 (=41.0) and 7148 (=71.8), as [ 0  0.6  

0.4 ] and [ 0.28  0.72  0 ] respectively, as shown in Figure 2.  Reversing the values for latitude 
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because latitude varies from bottom up, and then computing the outer product of these two 

vectors (the 33 matrix of all pairwise products), we obtain values for the 8 points of the 

compass and a central category: 
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Thus nine fuzzy values are equivalent to the position [ 4100, 7148 ], and the pattern of the 

values indicates that the sample is south-east of the centre, closer to the centre than to the 

eastern, south-eastern and southern points – see the position of the sample in Figure 2, marked 

by a cross.  This position can be recovered exactly by taking a weighted average of the nine 

points shown in Figure 2 that combine the three hinges for longitude and the three for latitude 

(only four of them are nonzero):  
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In the following sections we shall implement the above system of coding first in an artificial 

example to demonstrate the ability of the fuzzy coding to capture nonlinear effects, and second 

applied to a real data set. 

Artificial data set with known gradients 

An artificial data set is used first to illustrate the idea, where the gradients are known.  Two 

uncorrelated gradients were created, denoted by X (ranging from 0 to 10) and Y (ranging from 51 

to 100), for a sample size of 300.  Then five “species abundances”, denoted by A to E, were 

generated from these two gradients with the following characteristics: A and B both have 

quadratic relationships with gradient X, with a minimum at X=6, and no relationship with Y; B 
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has less variance than A; C has the opposite relationship, a quadratic relationship with a 

maximum at X=6, and a variance approximately the same as B; D has a positive linear 

relationship with both X and Y; E has a weaker positive relationship with X and a weaker 

negative relationship with Y.  The data of all five “species” were perturbed by random noise to 

partially disguise these relationships.  The inertias of the five “species” in the CA, which is a 

measure of its variance in the analysis, are in the following ordering: A > B > E > C > D – thus 

A and B are in this sense the most important variables of the data set, and happen to also have a 

nonlinear relationship with X.   

Figure 3 shows the CCA of this data set, where the inertia in the constrained space is 25.7% of 

the total for the species.  The constrained space is two-dimensional, and thus this solution 

explains 100% of the constrained inertia.  The two gradients are plotted using their (weighted) 

correlation coefficients with the two dimensions of the solution to define triplot vectors.  The 

interpretation of the Y vector is in accordance with the way the data were generated, since only 

D and E were linearly related to Y, D positively and E negatively.  The interpretation in Figure 3 

of the X vector would be that A and B are negatively related to X, while C is positively related.  

In particular, notice that only linear relationships can be inferred in such a triplot, so there is no 

possibility to diagnose the nonlinear relationships of species A, B and C with gradient X. 

Now the variables X and Y were fuzzy coded into five categories each, and the fuzzy categories 

included as constraining variables in a new CCA.  Figure 4 shows a different configuration of the 

species (approximately a 135 degree rotation of the species configuration of Figure 3), with the 

categories of the gradients joined together by lines from low (1) to high (5).  The sequence of 

categories for Y shows an approximate straight pattern, oriented similarly to the Y vector with 

respect to the five species as in Figure 3, with the lower categories Y1 and Y2 following 
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increasing abundance of species E and the higher categories Y4 and Y5 bending towards 

increased abundance of species D, again in accordance with the way Y was constructed as a 

linear gradient affecting D and E in opposite senses.   The sequence of X categories, however, 

now forms a curved pattern, with the lowest and highest categories on the right hand side in the 

direction of species A and B, and the middle categories on the left hand side.  This reflects 

exactly the three quadratic relationships of A, B and C with this variable, with C having the 

reverse relationship compared to A and B.  Because the lower categories of X (X1 and X2) are 

on the upper side of the vertical axis and the higher categories (X4 and X5) on the lower side, 

this implies that E has a negative relationship with X, while D has a positive one, again exactly 

how the data were constructed.  Clearly Figure 4 is more informative than Figure 3 about the true 

structure of the data.  The variance of the species in the constrained space is now 73.4%, of 

which 98.0% is actually contained in the two-dimensional solution of Figure 4.  Thus 72.0% of 

the species inertia is explained in the two-dimensional solution of Figure 4, compared to 25.7% 

in the two-dimensional solution of Figure 3, giving a huge gain in explained inertia as well as in 

interpretability of the solution.   

Application to constrained ordination of real data 

The real data set considered here consists of the abundances of 30 fish species at 89 sampling 

stations from the shrimp survey in the Barents Sea in the period April-May 1997, each based on 

a 20-minute bottom trawl.   The spatial position, latitude and longitude, as well as depth and 

temperature of each station are used as environmental covariates.   The spatial position is coded 

into nine fuzzy categories as described previously, and depth and temperature are coded into five 

categories each.   
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The canonical correspondence analysis (CCA) of these data is shown in Figure 5, as well as the 

geographical positions of the stations.  The contribution biplot scaling (Greenacre, 2012) is 

shown in the map of stations and species, with species having coordinates related to their 

contributions to the respective dimensions.  The solution is dominated by five species: Se_me 

(Sebastes mentella, deepwater redfish) Bo_sa (Boreogadus saida, polar cod), Mi_po 

(Micromesistius, blue whiting), Me_ae (Melanogrammus, haddock) and Tr_es (Triosopterus 

esmarkii, Norway pout).   The fuzzy categories are displayed at the weighted averages of the 

stations, given as a separate display, slightly enlarged for legibility.  Temperature shows a 

pattern of low values in the north and north-east, associated with abundance of polar cod, middle 

values in the west, associated with deepwater redfish, and higher values in the south and 

especially south-west, associated with blue whiting, haddock and Norway pout.  Obviously, 

showing temperature as a single vector in the display would not be able to show this pattern.  

Depth follows a more “straight” trajectory in the solution, from lower depths in the south and 

south-west to higher depths in the north-west and west, with a tendency to medium depths in the 

north.   

The total inertia of the data set is 2.781, of which 1.783 (64.1%) is explained by the 

environmental variables.  By contrast, if the four environmental variables are included in their 

original continuous form, only 1.085 (39.0%) of the inertia is explained.  Of course, the four 

variables imply only four parameters in the latter case (i.e., four dimensions in the constrained 

space), whereas the fuzzy categories imply more free parameters: four for the spatial variables, 

and four each for depth and temperature (i.e., 12 dimensions in the constrained space).  But a 

comparison of the two alternatives with the same number of free parameters still shows that the 

fuzzy coding has a benefit in terms of inertia explained, at least in this application.  For example, 

using only the spatial information to constrain the solution, if the positions are coded by latitude 

and longitude as well as their squared terms, as proposed by Borcart, Legendre and Drapeau 
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(1992), this implies four parameters and the inertia explained is 40.1%, whereas it is 50.5% for 

the fuzzy coded spatial variables, which also absorb four free parameters.   

Discussion 

Fuzzy coding of continuous variables was first introduced into the ordination context in the 

French literature, originally in a doctoral thesis by Bordet (1973) and subsequently used by 

Ghermani, Roux and Roux (1977) and Guitonneau and Roux (1977) to facilitate the joint 

analysis of continuous and discrete variables.  Various other applications have appeared, for 

example Loslever and Bouilland (1999) and Loslever and Lepoutre (2004).  Aşan and Greenacre 

(2010) demonstrated the ability of fuzzy coding to capture nonlinear relationships amongst 

continuous variables in biplots.  They also showed how estimates in correspondence analysis of 

the fuzzy-coded categories of continuous variables can be back-transformed (i.e., defuzzified) to 

estimates of the original variables to obtain explained variances for each dimension of the 

solution. 

In this report the benefit of fuzzy coding of continuous environmental variables in constrained 

ordinations has been demonstrated.  Categorical variables have more flexibility to explain the 

relationships of the environmental variables with the pattern of species abundances in the 

ordination, as shown by the application in Figure 5.   Fuzzy coding transforms continuous 

variables into fuzzy categories with no loss of information, since a fuzzy-coded variable can be 

back-transformed to its original value (Aşan and Greenacre, 2010).   This is an improvement 

over the strategy of coding a categorical variable crisply as a set of dummy variables according 

to a slicing up of the variable into intervals, where the information about the value of the variable 

within each interval is lost.    Another advantage is that the interpretation of the constraining 

environmental variables in the ordination is unified over continuous and categorical variables.  

An environmental variable that is truly categorical, for example sediment type, would be coded 
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crisply as a set of dummy variables and would be displayed in exactly the same way as a fuzzy 

variable – in Figure 5, for example, a crisp category would be at the average of the stations 

corresponding to it, just like the fuzzy categories are at the weighted average of their 

corresponding stations.  Thus there is only one rule of interpretation, instead of different ones for 

continuous and categorical variables.   

Significance testing in this framework, by permutation tests, can be conducted in the usual way 

(see, for example, Oksanen 2011).  To test an explanatory variable with several fuzzy categories, 

all categories should be included in the test of the relationship of the ordination solution with the 

variable.  A comparison of models can also be made, for example to test the linear model against 

one with more than two fuzzy categories – notice that the linear model is equivalent to coding 

the variable using two triangular membership functions, i.e., two fuzzy categories.  The number 

of fuzzy categories to use depends on the nature of the relationship being investigated: three 

fuzzy categories, which imply two free parameters, would allow the possibility of one turning 

point in the relationship, four fuzzy categories would permit two possible turning points, and so 

on.   

 
Software and supplementary material 

 
All computations were made using the ca package (Nenadić and Greenacre, 2007) and own 

scripts in the R language (R Development Core Team, 2011).  An R function fuzzy.tri for 

fuzzy coding into any number of categories using triangular membership functions is provided as 

supplementary material, as well as the artificial and real data sets used as examples. 
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 Figure 1: Coding of a continuous variable as three fuzzy categories, showing two 

examples: the temperature 2.5C is coded as  [ 0  0.625  0.375 ] and 3.3C as              

[ 0  0.425  0.575 ]. 
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Figure 2: Fuzzy coding of a spatial variable, using a fuzzy coding of longitude and 

latitude.  Three-category coding on each axis is illustrated, leading to 9 categories for 

the two-dimensional position. 
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Figure 3: Canonical correspondence analysis of artificial species data set, with linear 

constraints defined by two environmental gradients X and Y.  The gradients account 

for 25.7% of the inertia of the species data, all of which is contained in this solution. 
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Figure 4: Canonical correspondence analysis of the same artificial species data as in 

Figure 3, but constrained by the gradients each coded into five fuzzy categories.  The 

species inertia now accounted for in the constrained space is 73.4%, almost all of 

which is contained in this solution (72.0% of the species inertia), and the patterns of 

the fuzzy categories are in agreement with the way the data were constructed.  
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Figure 5: Canonical correspondence analysis of the fish data set, with spatial 

(longitude, latitude) and environmental variables (depth, temperature) coded fuzzily.  

The fuzzy categories, contained in the frame on the left, are shown enlarged on the 

right.  The spatial map of the stations in the Barents Sea is shown at bottom right. 
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