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Abstract

The pg-median problem seeks to locate hierarchical facilities so as to ob-
tain a coherent structure. Colierence requires that the entire area assigned to
a facility at one level must be assigned to one and the same facility at the
next higher level of the hierarchy. Although optimal solutions to the pg- me-
dian problem have been obtained by a combination of linear programming and
branch-and-bound, large problems are likely to require heuristic approaches for
the forseeable future. This paper proposes several efficient heuristic methods
whose solution properties appear to be quite good when compared to those of
exact procedures.
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1 Introduction: The PQ-Median Problem

It is widely accepted that many facility systems and institutions are hierarchical in nature.
Consider, for example, a regionalized health delivery system, where there is an integration
and coordination of several levels of health services so that they operate as an articulated,
graded single system. The conceptual design consists of a number of hierarchical levels
providing differentiated services with each facility of the hierarchical level covering a
specific geographical area, and linked to centers in the next clevel of the hierarchy. As we
go “up" in the hierarchy, the geographical areas assigned to the centers in lower levels are
completely contained in the area of a center in the next higher level, where there is also
a link between these centers (e.g., referral of patients). Coherence, in the context of
hierarchical systems, requires that the entire area assigned to a facility at one level must
be assigned to one and the same facility at the next higher level.

Another example of a coherent structure is the political division of a country that is divided
into regions, that are themselves divided into provinces, which are divided into
municipalities. It is hard to think of a municipality belonging to two different provinces.

To achieve an efficient and effective hierarchical system, it is necessary to obtain not only
an efficient set of locations but also an effective districting of the catchment areas, since
these areas will be the ones to benefit from the services provided by the located facility.
While the research on facility location is rich in models aimed at siting hierarchical
facilities, there is little research that combines the location and districting of these facilities.
Location and districting models have traditionally been studied separately.

The pg-median problem (Serra and ReVelle, 1991) seeks the location of two levels of
hierarchical facilities and, at the same time, districts the demand areas utilizing these
facilities, achieving in the districting process a "coherent structure“. It is a multiobjective
model where, at each level, average distance to the facilities is minimized.

Recent computer developments allow solution today of quite large p-median problems using
not only variants of the revised simplex algorithm plus branch and bound but also using
Lagrangian methods (Rosing et al. 1979, Galvao and Raggi 1989). But when computing
resources and machines were scarce, several heuristics and optimal methods were
developed to try to find locations that, if not optimal, would provide a good solution to the
problem at hand. We face today in the need to solve the pg-median problem similar
obstacles to those faced in the solution of the p-median problem two decades ago.
Therefore, due to the considerable size of the linear programming model of the pq-median
formulation even for relatively small problems, other methods have been sought in order
to find good solutions. A brief review of heuristic solution methods for location problems
is presented next. Then, four heuristics aimed at solving the pq-median are described and
compared.




2 Heuristics for the P-Median Problem and Related Location Problems

The first heuristic for solution of the related uncapacitated plant location problem was
developed by Kuehn and Hamburger in 1963. Since then, a myriad of heuristics using
different approaches addressed to locational problems have been studied and proposed.
Maranzana (1964) developed a heuristic for the warehouse location problem in which the
number of warehouses was specified in advance. His heuristic began by initially siting p
facilities on the network and then dividing the network into p subsets, each one associated
with a facility. Successive facility relocation within the subset, followed by redivision of
the points into clusters, produced stable solutions.

One of the classical heuristics used to solve p-median problems is the Tietz and Bart
algorithm (1968). In the Teitz and Bart algorithm facilities are systematically interchanged
between occupied nodes and unoccupied nodes. At each interchange, the objective is
computed, and only trades that improve the objective are considered. One-opt trades
continue until no better value of the objective is found. This algorithm has been
demonstrated to be both efficient and robust by Diehr (1972), Cornuejols et al. (1977),
Rosing et al. (1974), and Hodgson (1986).

Cornuejols et al. (1977) proposed a greedy heuristic consisting of the selection of the first
median of the network and then the location, one at a time, of the facility that minimizes
the sum of the weighted distances, until p locations are obtained. The authors used this
greedy heuristic as the initial solution for the Teitz and Bart’s heuristic and obtained good
results for the p-median problem with reasonable computational time. They were able to
solve quite large problems, with m=n=100, in less than ten seconds on an IBM 370/1¢8
(Francis et al. 1983).

Narula et al. (1977) used Lagrangian relaxation of the linear programming formulation and
the method of reduced gradients to derive solutions. Since then, there have been a number
of attempts to improve the Lagrangean relaxation technique (see for instance, Geoffrion and
McBride 1978, Cornuejols et al. 1977, Guignard 1988).

Several heuristics based on the dual of the linear programming version of the p-median
model have been used to solve the problem. Diehr (1972) showed similar results to those
obtained by the Teitz and Bart heuristic with this approach. Bilde and Krarup (1977),
Erlenkotter (1978), and Guignard and Spielberg (1979) used dual ascent procedures to
obtain near optimal solutions to the dual of the uncapacitated facility location problem.

The coherent hierarchical pg-median model discussed in the introduction is very
computationally intensive to solve using linear programming relaxation and branch and
bound or by dual heuristics since it has a very large number of variables and constraints.
If the problem were to locate, as an example, 10 A level facilities and 3 B level facilities
in a 100-node network, the fully specified problem would have at least 30000 variables and
more than a million constraints.- It is necessary, as a consequence, to find a heuristic with
reasonable computing and storage time that is capable of dealing with the coherence feature
of the model. Another problem in solving the pg-median coherent formulation is its
multiobjective setting, which increases considerably the computing time in order to obtain




a tradeoff between the objectives.

Observe that one methodological approach to solution of the coherent hierarchical problem
is to locate each level independently of the other in a successive manner starting from the
top of the hierarchy and proceeding down to the bottom or starting from the bottom of the
hierarchy and proceeding up to the top. These types of models have been referred to as
top-down or bottom-up. Banergi and Fisher (1977), and Fisher and Rushton (1979) used
the p-median model to solve each level of a hierarchy independently. Lea (1978), Narula
(1981) and Hodgson (1984) demonstrated that this approach of locating hierarchical
facilities would generally produce inferior results to simultaneously locating all levels. The
simultaneous approach employed by Hodgson produced better solutions than either the top-
down or the bottom-up methods, and the bottom-up approach generally outperformed the
top-down. Hodgson observed that this could be due to the much higher weighting applied
to the usage of low-level facilities.

Traditional top-down methods optimize the top level location, but the enforced use of such
locations as low-level centers produces systems in which the lower level solution is
generally inferior to the lower level solution obtained if the location was done without
considering the siting of top level facilities. In some cases, the suboptimality of the low-
order system outweighs the advantages of the top-level locations resulting in hierarchies
that are inferior overall.

Similarly, traditional bottom-up methods generate the best low-order locations because of
their unconstrained goal of optimization at that level, but tend to produce very bad results
in the location of higher-level facilities. The restriction imposed by choice from only few
lower-level potential locations gives worse results at the highest level, and overall, the
advantages derived at the lower levels are generally outweighted by the suboptimality of
the highest-level location (Hodgson, 1984).

It is necessary then to solve the hierarchical coherent problem using some kind of heuristic
that effects a compromise between the top-down and bottom-up heuristics. The pq-median
problem formulated here is multiobjective. Each hierarchical level has associated with it
an objective of weighted distance to be minimized. This means that in order to find a
solution, a compromise between the objectives at both levels has to be found. In the
following sections several simple multiobjective heuristics are described. These heuristics
are based on the Teitz and Bart algorithm and the top-down and bottom-up methods for the
coherent hierarchical model with two levels.

3 Bottom-up Heuristic

The first Solution Algorithm for the P-median HIERarchical problem (SAPHIER1) uses
a modified Tietz and Bart heuristic together with a bottom-up procedure to locate in an n-
node network p facilities that offer type A services and q facilities that offer type A and
type B services (i.e., successively inclusive services), where p > q, and where coherence
is observed. The facilities that offer both type A and type B services are referred to as
type B facilities. Two objectives are considered, one for each level. The first one




minimizes the average distance (or the total population weighted distances) to type A
services. The second one minimizes the average distance to type B services. The modified
Tietz and Bart heuristic is used to improve the location of the type B facilities, once the
facilities offering type A services have been located optimally. In order to have only one
objective so successive solutions from the algorithm can be compared, both objectives are
weighted and added. The weights will be such that wy = (1 - w,), where w, and w, are
the weights associated with the population-weighted distance to type A services and the
population-weighted distance to type B services. The larger the weight associated with the
type B objective (and therefore the lower the weight associated with the type A objective
is), the more likely is the final solution to be different from the initial one, since at the
begining the location of type A facilities is optimal since this is a bottom-up methodology.

The SAPHIERI! procedure is iterative, and the first iteration has two phases. In the first
phase, p + q facilities offering type A services are located optimally or heuristically,
depending on the technique used to do so. The Teitz and Bart heuristic can be used as a
method to obtain these locations, using a greedy heuristic for the starting solution, as in
Cornuejols (1977). The p-median model using the revised simplex method and branch and
bound when necessary can also be used as the first phase solution method for SAPHIER1
as can Lagrangian relaxation. The location of p + q facilities will determine p + q
districts® that will be called supernodes. These supernodes will form a second network,
where instead of having distances between its supernodes, there will be a coefficient g, that
expresses the relation between supernode j and supernode k. The coefficient g, is made
up of the sum of the products of the population of each demand area in j times the distance
from that demand area to to the facility that is associated with supernocle k. Then, in the
second phase of the first iteration, type B services are additively located at the facilities in
q supernodes of the (p + ¢)-supernode network. The location method used can be again
the Teitz and Bart heuristic or the revised simplex method with branch and bound when
necessary, or a Lagrangian relaxation method. The B objective will be to minimize the
sum of the demand weighted distances to the q type B services. That is:

p+ap+q
Min Z, = E Egjk'xjk
j=1 k=1
where:
8 = > ad,
ieO,

and O, is the set of nodes i assigned to facility offering type A services located at node j,
and d, is the distance from node i to the facility that serves supernode k. The variable x;
is one if supernode j is assigned to the facility at supernode k and zero otherwise. The set

2 Each demand area assigns to its closest facility, and the district consists of the set
of demand nodes assigned to a particular facility.




of constraints for this problem will be the traditional q-median constraints.

After solving this problem, the facilities associated with the supernodes that did not obtain
type B services, correspond to type A facilities. Facilities with type A and type B services
correspond to type B facilities. Therefore, there will be p type A facilities and q type B
facilities located in the initial network. Coherence is observed since all nodes assigned to
a type A facility are assigned to one and the same type B facility by virtue of use of the
supernodes and the g, coefficients. The assignment of supernode j to supernode k means
that all nodes assigned to the type A facility associated with supernode j will be assigned
to the type B facility associated with supernode k.

The solution found so far could correspond to a traditional bottom up heuristic with the
additional feature that coherence is observed. Average distance to type A services is
optimal. On the other hand, average distance to type B services is most likely not optimal,
since some areas may not be assigned to their closest type B facility for type B services
(due to coherence). They are also not likely to be optimal because the potential locations
for type B services were reduced to a few nodes (the p + q facility sites picked in the first
step) instead of using all n nodes of the network.

SAPHIER1 seeks a trade-off between average distance to type A services and average
distance to type B services. A set of weights has to be arbitrarily determined so a weighted
objective can be used as the decision rule in choosing solutions. If the weights are chosen
so that w, = 1 and therefore wy = 0, the solution obtained in the first phase will be the
final one, since the only objective is the location of facilities offering type A services, and
these are already optimally sited. For any other set of weights, SAPHIER1 will seek an
improvement of the weighted objective. It may be possible that, for a given set of weights,
by relocating a facility offering type B services the reduction in the B objective will offset
the increase in the A objective, since facilities offering type B services also offer type A
services. In this case, a better weighted objective is obtained.

The next iterations seek improvement in the solution of the pg-median problem according
to the set of weights chosen. The weighted objective for the initial solution has been
computed and stored. The procedure used to obtained an improvement of the weighted
objective (if any can be obtained) is similar to the Teitz and Bart heuristic. First, one of
the p + q facilities offering either type A or A+ B services is relocated to a node that does
not have a facility. The new A objective (average distance to type A services) is
computed. Observe that this objective will most likely be worse than the initial A
objective, since the location of type A services has been modified, and prior to this
modification it was optimal.

Now the supernodes are computed as in the initial solution. Each facility (both type A and
type B) that offers type A services will have a supernode associated with it. This
supernode consists of all areas assigned to the facility for type A services. There will be
again p + q supernodes. The. coefficients g, are computed for all pairs of supernodes.
Then type B services are relocated in q of the p + q supernodes and the B objective
(average distance to type B services) computed. The new weighted sum of objectives is
computed (w, x average distance to type A services + wy x average distance to type B




services). The new B objective may be smaller or larger than the one found in the
previous solution. If it is smaller, it may be possible that the weighted sum of objectives
will be better that the previous one. If this is the case, a new solution for the pg-median
problem is found according to the set of weights specified. If the new weigthed objective
is not better than the previous one, then this solution is ignored and the previous solution
is restored as the current solution.

This procedure is repeated, as in the Teitz and Bart heuristic, for all facilities and nodes.
At the end of each iteration the weighted objective is computed and compared to the
previous best solution. When all one-opt relocations have been tried, the final solution is
compared to the solution found before the relocations started. If the best solution found-
differs from the initial solution, the one-opt relocation procedure is started again with the
best solution as the initial one. On the other hand, if both solutions are equal, SAPHIER1
is completed and the solution is final for the set of weights specified. A new set of weights
can be determined and the search for a new best weighted solution can be performed in the
same fashion. A step-by-step description of SAPHIERI1 follows:

SAPHIER 1
1. Set a weight w,. Set Z, = M, a very large number.

2. Locate p + q facilities offering type A services using a p-median methodology,
exact or heuristic where p is the number of facilities offering only type A services
and q is the number of facilities offering type A and type B services.

3. Compute the weighted distance to the p + q facilities offering type A services
(ZW)

4. For each facility offering type A services, create a district consisting of all
demand areas assigned to it. The district will be called a "supernode". There will
be p + q supernodes.

5. For each pair of supernodes compute the coefficient g, consisting of the sum
of the demand weighted distances of each demand area in supernode j to the
facility offering type A services at supernode k.

6. Locate type B services at q of the p + q supernodes, using an exact p-median
method or a p-median heuristic, where the objective (Zg) is to minimize the
average distance from the demand areas in each supernode to type B services.

7. Compute the weighted sum of both objectives (Zy = w,Z, + (1-w,)Zy) and
store the solution.

8. Compare the new Z,, with the old Z,,. If the new solution is better, accept the
new solution and go to step 9. If the old solution is better and a full cycle of
exchanges has not been completed, store it and go to step 9. If a full cycle of
exchanges has been completed, and the old solution is still better, stop.




9. Relocate to a currently empty node one facility out of the p+q facilities
offering type A services as in the Teitz and Bart heuristic and re-compute Z,.

10. Repeat steps 4-7.

Observe again that the use of supernodes to locate type B services is crucial to the
SAPHIERI procedure, since it preserves the characteristic of coherence. The creation of
supernodes, formed by the areas assigned to each facility offering type A services, allows
type B facilities to be located with coherence, since they will only be allowed to locate at
nodes which are already chosen for facilities offering type A services, that is, on top of the
p + q already located facilities. In addition, each supernode will be assigned to a facility
offering type B services. Therefore all areas included in the supernode (and therefore
assigned to the same facility for type A services) will be assigned to one and the same
facility offering type B services. Since type B facilities offer type A services, the final
result will be the location of p type A and q type B facilities.

4 Top-Down Heuristics

Top-down heuristics generally start locating the top level of the hierarchy (the one with the
least facilities in a pyramidal hierarchy) and proceed to successively locate each lower
level. In this section three similar top-down heuristics are presented in the context of the
coherent location of hierarchical facilities.

Most top-down methods are useful for allocating hierarchical facilities with sucessively
inclusive services, but do not offer trade-offs between the levels of the hierarchy. The top
level is first located, and will have an objective value associated with it. Then the next
level is located, subject to the location of the top-level facilities. This objective is most
likely to be non-optimal from the standpoint of that particular level, since it is constrained
by the top level locations. The heuristics presented in this section search trade-offs
between the average distances to the facilities at each level of the hierarchy. These
heuristics are aimed at locating hierarchical coherent facilities with successively inclusive
services.

Again p type A facilities and q type B facilities need to be located, where p > q. The
starting point of the top-down heuristics described here is the optimal location of the
higher-order facilities, i.e., type B facilities, which offer both types of services. Any
solution method such as Teitz and Bart or the revised simplex method with branch and
bound or Lagrangian relaxation can be used. Once the facilities offering type B services
are located, districts are formed. Each district consists of the areas assigned to each type
B facility. Consequently, there are q districts, one for each type B facility. Now that q
level B facilities are located and the districts formed, it is necessary to know how many of
the type A facilities need to be located in each district and where they have to be sited.

The use of districts is necessary to observe coherence. Since all demand areas assigned
to a type A facility have to be assigned to one and the same type B facility, by locating the
type A facilities within the districts, coherence will be observed. This districting problem




can be solved using several different approaches.

Observe that now there is already one fixed facility offering type A services in each
district, since the services are successively inclusive. In this case, the objective in each
district may be non-convex, at least when few facilities are located (see ReVelle and
Elzinga, 1988). Since type B facilities offer type A services, each district formed will have
a fixed facility offering type A services. This facility has to be considered as the first
facility offering type A services, and cannot be removed when two or more facilities
offering type A services are located, because it is the basis for district formation. Since
this facility is fixed (it determines the district) and the facility is not necessarily sited at the
best position for a single facility offering type A services, the weighted distance function
with respect to the number of facilities offering type A services may be non-convex.

If there are fixed facilities, deterministic dynamic programming can be used to solve the
problem, where the stages are the districts and the states are the number of facilities to be
located in each district. An alternative is to use lagrangian relaxation of the linear
formulation of the problem (Everett 1963). Both procedures can become expensive as the
number of districts and locations becomes relatively large. A good discussion of both
methods can be found in ReVelle and Elzinga.

A third solution in the case of non-convexities of the objective function is to modify the
distance matrix to account for districting and then use any p-median heuristic or optimal
procedure to solve the problem. The modification is done in such a way that the distance
between areas and potential facility sites that do not belong to the same district is set to a
very large number. Therefore, assignments between these areas should not be obtained in
the final solution. Once the matrix is modified with such distances, a normal p-median
problem can be solved to locate the facilities in the whole region. The solution method can
be the revised simplex algorithm with branch and bound, but this might get computationally
intensive for relatively large networks. Alternatively, the Tietz and Bart heuristic or
lagrangian relaxation can be used to solve the problem.

Both top-down heuristics presented in this section will start with the optimal location of
type B facilities using a p-median formulation that can be solved by any conventional
solution method. The top-down heuristics will also determine the districts by assigning the
population areas to the closest type B facility. On the other hand, each heuristic will use
a different method to allocate facilities offering type A services among districts.
SAPHIER2 will use the distance matrix modification method. SAPHIER3 will use
dynamic programming to find the optimal number of facilities that offer type A services
to locate in each district. Then both top-down heuristics will try to improve the location
of type A facilities and obtain a trade-off between average distance to type A facilities and
average distance to type B facilities. The formal steps of the SAPHIER?2 heuristic are as
follows:




SAPHIER 2

1. Set a weight w, reflecting emphasis on the A objective, and a weight wy,
reflecting emphasis on the B objective, such that w, + wy = 1

2. Locate optimally q type B facilities using a p-median methodology.
3. Compute the objective value Z, and store it.
4. Form districts by assigning each population area to its closest type B facility.

5. Modify the distance matrix to reflect the districts just created, so that the
distance between demand areas which are in different districts is set to a very large
number.

6. Locate p type A facilities with the new distance matrix using a p-median
formulation and store the A objective (Z,)

7. Compute the weighted objective (Zy,), where Zy, = w,Z, + (1 - w,)Zp and
store the solution. If the new objective is smaller, store the solution obtained after
the trade and its objective. If not, restore the old solution. If all possible one-opt
trades for each type B facility have been done, and no improvement has occured,
stop. If not, go to step 8.

8. Trade the location of one of the type B facilities located in step 1 to one of the
currently unoccuppied positions, as in the Teitz and Bart heuristic.

9. Store final solution for weight w, and go to step 1.

The heuristic SAPHIER3 uses dynamic programming to allocate p type A facilities among
q districts. As in SAPHIER2, the first step is the optimal location of q type B facilities
using any of the mentioned solution methods. Once located, each facility supplying type
B services will have a corresponding district, composed of all areas assigned to each type
B facility. Therefore, there will be q type B districts in the region of study.

The next step is to locate the facilities offering type A services only. Another method than
the modification of the distance matrix employed in SAPHIER2 to allocate facilities to
districts is the use of a deterministic dynamic program where the number of facilities to
locate are states and the stages are given by the districts. This dynamic problem can be
cast as an integer program as follows:
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Min Z = Y f,0p
k=1

subject to:

q
Yv=p
k=1

where p is the number of type A facilities to locate, q is the number of districts, y, is the
number of facilities to locate in each district k (y, = 1, 2, 3,..., p), and f,(y,) is the total
weighted distance in district k from demand areas to their closest facility offering type A
services when y, facilities are located in that district.

Observe that the first facility offering type A services and the associated weighted distance
to it from all population areas in each district is already known. These facilities
correspond to the type B facilities already located, since these facilities also offer type A
services. Therefore, prior to solving the dynamic program, one must find for each district
the value of the weighted distance when 2 to p facilities offering type A services are
located, that is, f,(y,), and such that one facility offering type A services -the type B
facility- is fixed. This can be done by solving for each district a modified y-median
problem for y = 2,..., p to take into account the fixed type B facility offering type A
services. Any of the standard solution methods discussed can be used to solve this
problem, since the fixed facility means the addition of only one constraint that does not
severely affect the solution procedure. These problems are much smaller in size, the size
of only the districts.

Once f,(y,) is known for y, = 1,...,p in all q districts, the deterministic dynamic program
can be solved using any standard recursive method. Once this solution is known the
locations of the facilities offering type A services are also known for each district since
they were found in order to obtain the weighted distances.

At this stage the value of the objectives and the locations corresponding to both type A and
type B levels are known. As in SAPHIER?2, average distance to facilities offering type B
services is minimum, unlike the average distance to type A services, since the location of
facilities offering the type A services was constrained by the existence of districts. The
heuristic SAPHIER3 will try to improve the location of facilities offering type A services.
This cannot be done without degrading the average distance to type B services. The formal
steps of the SAPHIERS3 heuristic are as follows:

SAPHIER3

1. Set a weight w, corresponding to the A objective, and a weight wy
corresponding to the B objective, such that w, + w, = 1
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2. Locate optimally q type B facilities using a p-median formulation
3. Compute the objective value Z, and store it.
4. Form districts by assigning each population area to its closest type B facility.

5. Locate, for each district, 2 to p facilities offering type A services using a p-
median methodology, and such that one facility offering type A services -the type
B facility- is fixed.

6. Use dynamic programming to find for each district the optimal number of
facilities offering exclusively type A services.

7. Compute the weighted objective (Zy,), where Zy, = w,Z, + (1 - w,)Z; and
record the solution. If the new objective is smaller, store solution obyained after
the trade and its objective. If all possible one-opt trades for each type B facility
have been done, and no improvement has occurred, stop. If not, go to step 8.

8. Trade the location of one of the type B facilities located in step 1, as in the
Teitz and Bart heuristic. Repeat steps 3 to 7.

9. Store final solution for weight w, and go to step 1.

5 Top-Down Bottom-Up Heuristic

A heuristic that uses features of the top-down and bottom-up heuristics described so far is
presented here. This heuristic, SAPHIER4, combines ReVelle and Elzinga’s greedy
procedure (1988) to find the number of type A facilities to locate in each district with the
Teitz and Bart heuristic. As in both SAPHIER2 and SAPHIER3 heuristics, the first step
is the median location of q type B facilities using any solution method, such as the linear
programming with branch and bound where necessary, or the Teitz and Bart heuristic.
Once located, each facility supplying type B services will have a corresponding district,
composed of all areas assigned to each type B facility. Therefore, there will be q type B
districts in the region of study. The initial locations of the q type B facilities have to be
stored because they will be later used in the heuristic. However, for the steps that we
describe next, these locations are not taken into account, and only the districts formed by
them are utilized.

After the q districts are designed, p + q facilities offering type A services are located
among the q districts. The heuristic SAPHIER4 will use the procedure designed by
ReVelle and Elzinga to locate facilities offering type A services in the districted region.
Basically, the first step of this procedure is to find, using any p-median type formulation,
for each of the q districts, the optimal location of 1 to p facilities offering type A services,
since there are already q facilities offering type A services that are already located, and the
corresponding objectives of weighted distance; then find, again for each district, the
reduction in the weighted distance when going from t to t + 1 facilities, where t = 1,...,
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p - 1, since each district starts with one facility offereing type A services already located.
The next step is to assign incremental facilities among districts by searching for the largest
reduction in the weighted distance. First, one type A facility is conceptually allocated to
each of the districts. 1Its position is not specified unless it is the only facility finally
allocated to the district. The next facility to be allocated among the districts will be
directed to the district which gives the largest reduction in the weighted distance when
going from one to two facilities allocated to it. The next allocation of a facility to any
district goes to that district which has the next largest reduction in the costs. The
procedure is repeated until p + q facilities offering type A services are located in the q
districts. A more complete description of this greedy algorithm is found in ReVelle and
Elzinga. Observe that, unlike in SAPHIER?2 and SAPHIER3, the p + q facilities offering
type A services are located without forcing q of them to be located where the type B
facilities were.

Therefore, now it is necessary to find which of these facilities are going to offer type B
services, while observing coherence. SAPHIER4 will use the same procedure as in
SAPHIERT! to solve this problem. The p + q facilities offering type A services already
located determine p + q districts, called supernodes. These supernodes will form a second
network, where instead of having distances between its supernodes, there will be a
coefficient g, that consists of the sum of the population at each demand area in supernode
j times the distance from this area to the facility associated with supernode k. Then, in the
second phase of the first iteration, type B services are located in q supernodes of the (p +
q)-supernode network. The location method used can be again the any of the standard p-
median methods. The B objective will be such that:

P+qP+q
Min Z, = E Egjk‘jk
j=1k=1
where:
8y = E ad,
l'eO/

where variables and notation are described in section 3. The set of constraints for this
problem will be the traditional p-median constraints.

After solving this problem, the facilities associated with the supernodes that did not obtain
type B services, correspond to type A facilities. Facilities with type A and type B services
correspond to type B facilities. Therefore, there will be p type A facilities and q type B
facilities located in the initial network. Coherence is observed since all nodes assigned to
a type A facility are assigned to one and the same type B facility by virtue of the supernode
organization of the network and the g; coefficients. If supernode j is to receive B type
services from supernode k, all nodes assigned to the type A facility in supernode j will be
assigned to the type B facility in supernode k.

At this stage the value of the objectives and the locations corresponding to both type A and
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type B levels are known. Observe that the B level might not be optimally located, since
the location of the facilities offering type B services was subject to the position of the p +
q facilities offering type A services. Similarly, the location of the type A facilities might
not be optimal, since it was constrained by the districts previously designed. Therefore,
the solution so far is a compromise between both levels. The formal steps of the
SAPHIER4 heuristic are as follows:

SAPHIER4
1. Set weights w, and wy for each objective, such that w, + w, = 1

2. Locate optimally q type B facilities using a p-median formulation, and form
districts. Store Zj.

3. Locate p type A facilities in the districted region using ReVelle and Elzinga’s
algorithm. Observe that q facilities offering type A services have already been
located. Form the corresponding p + q supernodes.

4. Locate q type B facilities among the p + g supernodes, as in SAPHIERI, using
a p-median formulation, compute the new weighted objective (Zy), where Z,, =
w, Z, + (1 - w,)Zg, and store the solution.

5. Form districts corresponding to the new location of the q type B facilities.

6. Locate p type A facilities using Revelle and Elzinga’s algorithm, store new A
solution Z, and form p + q supernodes. Then locate q type B facilities in the p
+ q supernodes. Compute the new weighted objective Z,,.

7. Compare the new weighted objective (Z,,’) with the previous one (Z,) obtained
in step 4. If Z,, is smaller (Z,,) < Z,,), store solution obtained after the trade,
set Zy, = Z,,” and go to step 5. If the new solution is equal or larger, discard it
and continue to step 8.

9. Trade the location of one of the type B facilities located in step 2, as in the
Teitz and Bart heuristic, and continue to step 3. Repeat until all possible one-opt
trades for each type B facility have been done

10. Store final solution for weights w, and wy and goto step 1. Generate all
necessary solutions using different weights.

6 Results and Computational Experience

The pg-median problem was solved on two test networks using the four different methods
described above. The first network had 25 nodes and was used to compare the four
SAPHIER heuristics among themselves and to compare them to the optimal solution
obtained by using the revised simplex algorithm with branch and bound when necessary.
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The second network had 79 nodes and only the heuristics were used to obtain solutions,
and the solutions could only be compared to one-another. In both cases several different
numbers of type A and type B facilities were used. Results and run times are described
for both networks.

The routines and subroutines used for all heuristics have been coded in IBM FORTRAN
computer language version 2, which is a vectorized version of FORTRAN that takes
advantages of the IBM 3091 E-600 supercomputer facilities used.

Different combinations of type A and type B facilities were used in evaluating the
performance of the heuristics. To compare them the problem was first solved using the
relaxed linear program plus branch and bound as needed. The programs were solved using
a comercial software package, MPSX/MIP®. Therefore, optimal solutions could be
obtained for comparison. The full specification of the 25-node problem involved 1,925
integer variables and more than 17,500 constraints. The constraint set on coherence alone
had 25° elements. In order to reduce the problem size, the number of assignment variables
were cut down using the Rosing et al. (1978) approach. The weighting method was used
to solve the multiobjective problem. In order to identify the non-inferior set in the
objective space, several runs were made with differents sets of weights for each
combination of type A and B facilities.

The initial step of the SAPHIERI algorithm was the optimal location of p + ¢ type A
facilities using a p-median formulation. These p + q locations were found using the Teitz
and Bart algorithm instead of solving a linear relaxation of the p-median model with branch
and bound. Even though optimal solutions with this method are not ensured, this was done
in order to have a homogeneous approach to the problem. The initial locations for the
Teitz and Bart heuristic were computed using the greedy adding heuristic developed by
Kuehn and Hamburger.

Once the A locations were found, the initial B locations were computed using again a one-
opt approach with a greedy adding heuristic to determine the starting locations. In order
to observe coherence only the p + q facilities with type A services already located were
candidates to have a type B facility.

The initial locations for the top-down heuristics SAPHIER2 and SAPHIER3, and the top-
down bottom-up heuristic SAPHIER4 were found using a similar procedure to the one used
for the SAPHIER1 algorithm. The first step in these three heuristics is the location of g
type B facilities following a p-median formulation. These facilities were located using the
Teitz and Bart heuristic with Kuehn and Hamburger greedy-adding procedure for the
starting B locations. Then the initial locations of the p + q facilities offering type A
services were found using the same greedy-adding heuristic but with the constraint that

3 MPSX: Mathematical Programming System EXtended/370. MIP: Mixed Integer
Programming/370. This software was developed by IBM.
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demand areas could assign only to a type A facility that was in the same district, and that
q of these facilities had their sites fixed, since q type B facilities were already located, and
these facilities also offer type A services. Observe that at the beginning of the greedy
heuristic there is a facility offering type A services in each district, since type B facilities
also offer type A services.

During the iterative process SAPHIER3 always solves for the location of facilities offering
type A services in the districts formed by the B facilities with dynamic programming. To
do so, for each district, 2 to p facilities offering type A services are located and their
associated weighted distance is computed, with the constraint that one facility offering type
A services is fixed, since the associated type B facility in each district also offers type A
services. All these p-median problems for each district were solved using the Teitz and
Bart heuristic with the additional constraint that one facility was fixed. In each problem,
the initial solution was Kuehn and Hamburger’s greedy adding heuristic with the additional
constraint of a fixed facility.

SAPHIER4 solves the location of type A facilities in a districted region using ReVelle and
Elzinga’s algorithm. This algorithm requires, for each district, the location of 1 to p
facilities offering type A services using a p-median model. All these problems were solved
using the Teitz and Bart heuristic with Kuehn and Hamburger’s greedy adding heuristic as
the initial solution, but any method could be used for all these different p-median problems:
the revised simplex algorithm with branch and bound when necessary, one-opt heuristics,
or Lagrangian relaxation methods. Then, ReVelle’s and Elzinga algorithm is used to find
the number of facilities offering type A services that should be located in each district.
Once the problem is solved, there will be a new value for the A objective. Therefore, the
new weighted objective (Zy,’) can be computed using the same weights w, and wy,
employed when finding the value of the initial weighted objective (Z,,). The new A
objective (Z,’) and the new B objective (Z;’), are combined to yield Zy,” = w,Z,+ wpZs.

Observe that the initial location is independent of the weights assigned to each objective.
In the case of SAPHIERI, as the B objective is more heavily weighted more iterations of
the heuristic are likely to occur, since the starting solution is most favorable to the A
objective. Similarly, the number of iterations for top-down heuristics will tend to increase
as the A objective is more heavily weighted due to the initial solution.

Table 1 presents the results for the 25-node network obtained using all the solution
methods. The table is set up such that all solution methods can be compared for each
combination of p and q facilities located. The first column indicates the number of type
A and type B facilities located, respectively. Then, for each solution method, the values
found for both objectives are presented, corresponding to the different weights applied.
The first objective, Z,, is the average distance per person to facilities offering type A
services. The second objective, Z,, is the average distance from population areas to
facilities offering type B services. Both objectives are expressed in kilometers per person.
For each set of facilities more than ten weights were used to generate the trade off between
objectives.

The solutions obtained with linear programming and branch and bound when needed
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(LP+B&B column) for different weights show that there is a clear trade-off between both
objectives, as depicted in Figure 1. Both objectives are minimized, so in these figures, the
non-inferior solutions are represented by points which are closest to the origin. In other
words, the smaller the average distances from demands to closest facilities, the better the
solutions are. The trade-off curves are expected to be convex, because they are boundaries
of convex sets in objective space. However, some local non convexities such as gap points
may appear when the heuristics are used, due to the integer nature of the problem at hand,
and, due to the non-optimal characteristics of heuristics.

Since optimal solutions are known (by solving the problem using linear programming and
branch and bound when needed) the optimal trade-off curve is also known. It is possible
that some of the non-inferior points were not found, even though more than ten runs were
done with different weights to try to obtain all of them®. Nevertheless, the use of the
weighting method for an integer programming problem implies that one cannot be certain
that all of the non-inferior solutions are found (Cohon, 1978). Indeed, the use of the
weighting method for 0,1 problems is unlikely to generate all non-inferior points because
of the occurrence of gap points.

Once an accurate convex hull of the trade off curve is generated, it can be used to compare
the effectiveness of the heuristics. The closer the trade-off curves generated with the
heuristic are to the optimal trade-off curve, the better the heuristic is. As Figure 1 shows,
all the heuristics performed similarly, being close to the optimal trade-off curve except for
SAPHIER1. This last heuristic had a worse performance when using a heavy weight in
objective B, since the solution associated with this weight showed a relatively larger
solution for objective B (the second level of the hierarchy). Neverthelsss, the difference
is not very significant.

It was expected that the trade-off curves of the heuristics would stay on top or above the
optimal trade off curve, but in two graphs in Figure 1 this did not occur, since, as
mentioned before, not all the non-inferior solutions were computed.

The models were solved in an IBM 3090-E600 mainframe computer. Average computer
times per run were calculated for each problem and solution method. Table 2 shows the
results for the heuristics in the 25-node network. The figures correspond to seconds of
CPU per run. Approximately twenty runs were done per problem using different weights.
As the number of facilities located increases, the heuristics take longer to find a solution.
This is because more exchanges are necessary as the number of facilities is increased.

As expected, SAPHIER1 was most efficient in computing time compared to the top-down

4 In the discussion of these models, the term non-inferior points is used for points
to be generated by the different soultion methods, even though they might not be
in reality non-inferior with respect to the optimal solution found with linear
programming and branch and bound.
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heuristics since the number of one-opt trades is much less. Among the top-down
heuristics, the fastest one was SAPHIER2. SAPHIER4 was the slowest in finding
solutions. If 6 type A and two type B facilities are located, SAPHIER! will outperform
SAPHIER4 by a factor of ten. Ranking in speed from fastest to slowest was SAPHIERT,
SAPHIER2, SAPHIER3 and SAPHIER4.

Table 3 presents the results of the run times for solution of the linear relaxation and the
branching and bounding, when this combination was used to solve the pg-median. Average
run times vary with the number of type A and type B facilities, but no clear pattern is
observed. The pg-median model is quite expensive to solve when 2 type A and 1 type B
facilities are located, to find the continuous solution, compared to the other problems. The
p = 2 q = 1 median problem takes twice as much CPU time as the p = 6 q = 2 median
problem to find the continous optimum, this last one being the second slowest.

Two different combinations of type A and type B facilities were used with the 79-node
network. For this size problem, only the four heuristics could be used to solve the two pg-
median problems. Linear relaxation and branch and bound was not used because with 79
nodes the number of variables and constraints is very large, and therefore computationally
extremely expensive to solve.

The starting solution of SAPHIER! was computed as in the 25 node network. Table 4
presents the results of the heuristics for the pg-median in the 79-node network. A clear
trade-off between average distance to type A facilities and average distance to type B
facilities is obtained. The first graph in Figure 2 shows the trade-off curves corresponding
to Table 4, when 6 type A and 3 type B facilities are located. SAPHIER] shows a nice
trade off, and finds the best values for both objectives when they are considered separately.
SAPHIER? found only two points in the trade-off. Both SAPHIER3 and SAPHIER4
presented a non-convexity in their trade-off curves, points Y and X respectively.
SAPHIER3 found a solution with the same minimum value of B and a smaller minimum
value of A than the others.

The second graph in Figure 2 shows the results if 8 type A facilities and 2 type B facilities
are located. This time only SAPHIER3 obtained a non-convexity in its trade-off curve
(point X). The rest of the heuristics behaved similarly. SAPHIER2 was the one that
obtained the best curve, since most of it is below the other trade-off curves.

The heuristics for the 79-node problems were solved again on the IBM 3091-600. Table
5 shows the average run times for each problem and heuristic. Again SAPHIERI]
outperformed significantly the top-down heuristics. This time SAPHIER3 was the slowest.

Several conclusions can be drawn from these test problems. SAPHIER1 was much more
efficient in computer time than the rest of the heuristics. It also tended to give better values
when weights favoring the A objective as opposed to the B objective were used. On the
other hand, it was not very efficient in computing the solutions when the B objective was
heavily weighted. Both top-down heuristics and SAPHIER4 had the tendency to do the
contrary. The solutions found when wy was set close to 1 were better than when w;, was
close to 0. The problems solved in the 25-node network showed that the heuristics
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performed relatively well in identifying optimal non-inferior solutions and generating a
trade-off. Even though these tradeoffs sometimes present non-convexities, they can be
useful for the decision-maker in order to find the best-compromise solution.
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Table 1: Results for the pg-median model, 25-node network

#of
Fac. LP
Located + SAPHIER SAPHIER SAPHIER SAPHIER
P-q B&B 1 2 3 4
Z, Zy Z, Zg Z, Zy Z, Zg Z, Zy
2-1 15.93 | 25.04 15.93 | 25.04 15.93 25.04 15.93 25.04 15.93 25.04
15.34 | 25.14 15.34 | 25.14 14.56 26.85 14.56 26.85 14.77 29.82
14.53 26.85 14.56 | 26.85 14.53 30.31
14.53 | 30.20
32 11.18 17.98 12.17 17.98 11.53 17.98 11.53 17.98 11.53 17.98
10.69 18.60 11.74 18.04 11.08 19.47 11.08 19.47 10.69 18.60
10.66 19.88 11.01 18.42 10.72 20.17 10.72 20.17
10.69 18.60 10.69 20.44 10.69 20.44
10.66 | 20.04
4-2 10.08 17.98 10.57 17.98 10.08 17.98 10.08 17.98 10.08 17.98
9.77 18.21 9.65 18.52 9.67 20.24 9.67 20.24 9.65 18.52
9.73 18.29 9.65 20.45 9.59 19.89
9.65 18.52
9.59 19.84
5-2 9.04 17.98 9.53 17.98 9.04 17.98 9.04 17.98 9.04 17.98
9.00 18.02 8.98 18.42 8.98 18.42 8.83 18.52 8.90 19.24
8.82 18.45 8.82 18.55 8.78 19.48 8.72 19.91 8.78 19.48
8.75 19.29 8.72 19.91
8.72 19.91
6-2 8.24 17.98 8.57 17.98 8.24 17.98 8.24 17.98 8.24 17.98
8.13 18.21 8.31 18.42 8.07 20.14 8.09 20.17 8.10 18.60
8.11 18.29 8.16 18.55 8.06 20.24 8.04 19.71
8.02 19.71 8.06 18.63 8.02 20.07
8.05 18.97
8.02 20.14
6-3 7.66 14.53 8.18 14.53 7.66 14.53 7.66 14.53 7.66 14.53
7.39 14.96 8.11 14.64 7.44 15.46 7.58 14.71 7.48 15.18
7.70 14.71 7.50 15.41 7.42 15.41
7.50 14.88 7.44 15.46
7.39 15.00
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Table 2:

Average CPU Time, pq-median Heuristics, 25 nodes

# of
facilities SAPHIER SAPHIER SAPHIER SAPHIER LP
located 1 2 3 4 +B&B
(pq) (CPU sec) (CPU sec) (CPU sec) (CPU sec) (CPU sec)
2-1 0.10 0.41 0.93 0.60 254.3
32 0.30 1.35 3.68 5.29 227.7
4-2 0.43 2,01 4.36 6.16 180.6
5-2 0.63 3.11 6.62 8.97 134.7
6-2 0.76 3.56 8.713 10.54 148.7
6-3 0.93 5.83 9.39 12.11 166.1
Table 3: Average CPU Time, pg-Median LP+ B&B, 25 nodes
Optimal Avge,
int. sol. Avge. additional
# of using run time run time Total
facilities Total linear linear using avg.
located number relax. solution B&B run time
(p-q) of runs only (CPU sec.) (CPU sec.) (CPU sec.)
2-1 11 3 147.6 106.7 254.3
32 10 1 62.6 165.1 227.7
4-2 12 3 79.2 101.4 180.6
5-2 13 2 42.4 9.3 134.7
6-2 11 3 80.2 68.5 148.7
6-3 12 3 27.1 139.0 166.1
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Table 4: Results for the pg-median model, 79-node network

# of
Fac.
Located SAPHIER SAPHIER SAPHIER SAPHIER
pP-q 1 2 3 4
z, |z | z | z |z |z |z |n
6-3 226 412 220 412 218 412 224 412
219 414 211 422 212 422 215 419
215 416 213 429 216 420
212 419 210 41 210 441
209 433 {
8-2 214 560 205 560 { 205 560 210 560
202 562 203 562 203 562 196 580
201 566 196 569 202 569 195 583
196 196 195 201 579
196 588
Table 5: Average CPU Time per Run, PQ-Median SAPHIER, 79 nodes
# of
Facilities SAPHIER SAPHIER SAPHIER SAPHIER
Located 1 2 3 4
(p-@ (CPU sec) (CPU sec) (CPU sec) (CPU sec)
6-3 7.8 448.1 949.2 528.8
8-2 16.0 585.2 1480.5 1225.0

21




Figure 1: Trade-off Curves, 25-Node Network
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Figure 1 (Cont’d): Trade-off Curves, 25-Node Network
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Figure 1 (Cont’d): Trade-off Curves, 25-Node Network
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Figure 2: Trade-off Curves, 25-Node Network
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