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Abstract:  Hierarchical clustering is a popular method for finding structure in multivariate data, 

resulting in a binary tree constructed on the particular objects of the study, usually sampling 

units.  The user faces the decision where to cut the binary tree in order to determine the number 

of clusters to interpret and there are various ad hoc rules for arriving at a decision.  A simple 

permutation test is presented that diagnoses whether non-random levels of clustering are present 

in the set of objects and, if so, indicates the specific level at which the tree can be cut.  The test is 

validated against random matrices to verify the type I error probability and a power study is 

performed on data sets with known clusteredness to study the type II error.      

 

Keywords:  Hierarchical clustering, distance, permutation test. 

 
 
 
 
 
 
 
 
 



 2

1.  Introduction 

Ascending hierarchical cluster analysis is one of the most commonly used multivariate methods 

in practice.  A set of n objects – usually cases or other sample units – is described by a set of p 

variables, a dissimilarity measure is defined between the objects, and a method of clustering is 

chosen, for example, complete linkage or Ward clustering.  The analysis proceeds in a stepwise 

fashion, from single objects to the complete set, to construct a binary tree, or dendrogram, which 

summarizes visually inter-object dissimilarities.  A different approach is to apply a 

multidimensional scaling (MDS) to the inter-object dissimilarities, which aims to represent the 

objects as a map in a continuous space – usually a plane – so that inter-object distances in the 

map approximate the dissimilarities as closely as possible.  Clustering and MDS reveal discrete 

and continuous structures respectively and complement each other: the discrete clusters of the 

objects are sought in the high-dimensional space of the variables whereas MDS looks for a few 

directions of spread in the same space, called principal axes, which represent the positions of the 

objects optimally in a low-dimensional display. 

Faced with the dendrogram resulting from a hierarchical cluster analysis, the researcher has to 

make a decision where to cut the dendrogram to define the clusters.  This is almost always done 

by the rule-of-thumb of looking for a large jump in the node heights, where there has been a 

large increase in the dissimilarity measure at that point to move to the next merging of the 

objects.  The rationale is as follows: supposing that complete linkage clustering is performed, 

then cutting the dendrogram at a level d means that all inter-object dissimilarities within the 

clusters below this cut must be less than or equal to d.   So if there is a large jump between nodes 

in the dissimilarity levels, say from d to d+d for d relatively large, then cutting the 

dendrogram at d is more natural than at d+d because of the much higher within-cluster variance 

that is implied by cutting at the higher level, where is just one cluster less.  This decision about 
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where to cut the dendrogram, however, is not always clear – for example, there might be more 

than one obvious place where the dendrogram could be cut – so it would be helpful to have some 

further statistical guidelines to support this choice. 

This article explains a simple permutation test to identify the dissimilarity level below which all 

the clusters can be considered non-random.  

2.  Context of the application 

As an application, we use the data set on benthic (i.e., sea-bed) species abundances given by 

Greenacre (2007, 2010) – this is data set “benthos” available at www.multivariatestatistics.org.   

This data set consists of 13 marine samples of the sea-bed, 11 of which are taken at different 

locations, called sites, close to an oil-drilling platform in the North Sea, while the remaining two 

samples are from reference sites far enough away from the platform that they can be regarded as 

the natural environment for that region.  Data nij (i=1,…,13; j=1,…,92) consist of abundance 

counts of 92 species in each sample – on average about 56 of these species are found in any one 

sample, so approximately 39% of the entries in the data matrix consists of zeros.   One of the 

accepted ways of measuring biological distance between the samples for data such as these is the 

chi-square distance – see, for example, Greenacre (2007) – this is a weighted Euclidean distance 

computed on the relative abundances of the species in each sample: 
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where + indicates summation over the corresponding index.  Having calculated the 1313  

distance matrix between the sites, a classical multidimensional scaling (MDS) of the distance 

matrix has a total of 12 dimensions, with distance variance decomposed along the dimensions 

shown in Figure 1.  Two standard rules-of-thumb suggest that there are three dimensions worth 
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studying: the “elbow” rule* shows an elbow after the third dimension, while the “percentages 

above average” rule identifies three dimensions that exceed the average per dimension of  

100/12 = 8.75%.  Two views of the three-dimensional solution are given in Figure 2.   The view 

of the first two principal axes shows three groups of sites, the two reference stations on the right, 

and three groups of sites on the left, with the sites closest to the pollution source at top left and 

those further away at bottom left.  The third dimension separates out site 24, due to the unusually 

high abundance of one of the species at this site (75% of the species abundances in site 24 are 

due to one species, Myriochele oculata, whereas in the other sites this species accounts for much 

lower percentages of between 2% and 32%). 
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Figure 1: Scree plot of the percentages of variance along the 12 dimensions of the 

multidimensional scaling (MDS). 

 

 

 

 

Figure 2: Two projections of the three-dimensional MDS solution, showing dimensions 1 

and 2 on the left, and dimensions 3 and 2 on the right. 

                                                      
* The elbow rule in MDS is analogous to the “look for a big jump” rule in hierarchical cluster analysis for cutting the 
dendrogram, described in the introduction.  
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The above MDS solution of the sites clearly suggests that they form groups.  A hierarchical 

cluster analysis performed on the same distance matrix gives the dendrogram in Figure 3.  Since 

the chi-square distance is a weighted Euclidean distance, Ward clustering is an appropriate 

clustering option.  

 

 

 

 

 

 

 

Figure 3: Dendrogram of the chi-square distances between sites, using Ward clustering.    

The dendrogram shows the same four major groups seen in the first projection of Figure 2, as 

well as site 24 possibly separating from the group of sites 23, 13, 4 and 19, that was seen along 

the third axis in the second projection.   

Now the question arises as to the statistical significance of these results, whether they are non-

random: a cluster analysis would reveal groupings in any data set, even in many random ones.  

Figure 4, for example, shows a cluster analysis based on the same data set where the data for 

each of the 92 species have been randomly permuted – now, for example, that unusually high 

value which was in site 24 will pop up in any of the other sites (in this case it was randomly 

allocated to site 23).  This dendrogram now clearly suggests two clusters consisting of several 

sites in each and two “outliers”, sites 23 and 24 forming two isolated clusters of one site each.   
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Figure 4: Dendrogram of the chi-square distances between sites, after random 

permutation of the values for each species.    

The remainder of this article describes a permutation test which will show that the groups 

identified in Figure 3 are not random, whereas those in Figure 4 are (as one would expect) 

compatible with randomness.   

3.  Permutation test 

We use the terminology “inferior nodes” for those in the lower part of the dendrogram (formed 

initially), “superior nodes” for those in the upper part (formed later), and “top node” for the one 

that merges all the objects (i.e., the last node in the ascending hierarchical process).   Figure 5 

shows three additional dendrograms (a, b and c), based on further random permutations of the 

species data across the sites as well as the original dendrogram (d) of Figure 3.  This last 

dendrogram, based on the actual unpermuted data, distinguishes itself from the others by having 

higher levels for the superior nodes, especially the topmost node, while the inferior nodes have 

levels generally below those of the dendrograms based on permuted data.  This observation is 

simply saying that clusteredness consists in having groups with within-group distances small and 

between-group distances high.  Taking one of the dendrograms a, b or c of Figure 5, choosing a 
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level somewhere in the middle of the vertical scale and then stretching the nodes above this level 

upwards, and especially pushing the nodes below this level downwards to make a gap between 

the node levels is essentially making the groups more similar internally and further apart.  Such a 

level would then be where one would want to cut the dendrogram to arrive at a classification of 

the sites.   

 

 

 

 

 

 

 

 

Figure 5: Dendrograms resulting from three data sets based on random permutations of 

the data (a.-c.) and the dendrogram obtained from the original data (d.) – this last one is 

identical to Figure 3..    

Thus, when looking at the dendrogram in Figure 3 (same as Figure 5d) the question is whether 

one can identify a level where the nodes below this level are significantly lower than one might 

expect by chance. At the same time, one might consider the topmost node and ask whether a 

random version of the data could have led to a dendrogram with a higher topmost node.  This is 

the basis of the permutation test proposed here. 
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The test is designed as follows: 

1. The dendrogram is constructed on n objects using the original data, and with the 

distance/dissimilarity function and clustering method chosen by the user.  (In our 

application, n was 13, the data were the relative abundances, the distance was chi-square, 

and the method was Ward.) 

2. The n–1 node heights are stored in the first row of a matrix H: nodes are typically 

numbered from 1 (the lowest level) to n–1 (the highest, or top node).   

3. Then for a large number N–1of times (we assume the typical value of 999 times, i.e. 

N=1000) do the following:  Form random permutations of the data matrix by randomly 

shuffling the values for each variable across the cases, perform the same cluster analysis 

and store the node heights in rows 2 to N of H. 

4. For each of the n – 1 nodes, count how many of the heights computed on all 

permutations, including the original one, are smaller than or equal to those computed for 

the original data; i.e., for each column j of H, count how many satisfy the condition hij  

h1j (i = 1,…, N), storing these counts in the vector f = [ f1  f2 … fn–1 ].  Divide this count 

by N to obtain estimates of p-values p1, …, pn–1 in the vector p = (1/N) f. 

5. Significant clustering is indicated by a value of an inferior node that is well below 0.05 

(the aspect of multiple testing and lowering the significance level is discussed in Section 

8).  This indicates a possible level for cutting the dendrogram.  If there are several 

possibilities, choose the highest node, cut the dendrogram and then repeat the 

permutation test on each of the resultant clusters to check for possible subclusters. 

6. For the top node, which had count fn–1, the count of how many heights are greater than or 

equal to the one computed for the original data, is N– fn–1+1.  Dividing this count by N 



 9

gives the probability that a random dendrogram gives a top-node height greater than or 

equal to the observed one.  This can be regarded as a test for overall separation of the 

points, compared to what one would expect by chance.  

For example, in the case of Figure 3, the set of counts for N=1000 was 4, 1, 1, 1, 1, 1, 1, 2, 323, 

749, 996, 1000, giving p-values of 0.004, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.002, 0.323, 

0.749, 0.996, 1.   The natural threshold is thus between nodes 8 and 9, which implies five 

clusters, including the single one formed by site 24 (Figure 6). 

 

  

 

 

 

 

 

Figure 6: Level for significant clustering determined by the node-height permutation test, 

implying five clusters: (R40,R42), (S18,S8,S12), (S15,S9,S14), (S24) and (S23,S13,S4,S19). 

In this example all the node heights below this threshold are lower than one would expect by 

chance, with p-values very low.  As might be expected by simple inspection of each of the five 

clusters implied by the above cutting of the dendrogram, none show further subclustering when 

the same permutation test is applied to each of them (only those with more than two objects can 

be tested).  As far as the top node is concerned, the p-value for its “highness” is 0.001, because 

all the node heights of the randomly permuted matrices give top nodes lower than this value.  
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Thus there is not only clusteredness in the samples but also a significantly high dispersion.    As 

a side comment, the cutting of the dendrogram at this point is consistent in this application with 

the “cut where there is a big jump” rule-of-thumb described in the introduction: Figure 7 shows 

the 11 differences in the 12 successive nodes of Figure 6 – the average difference is 0.262 and 

the cutpoint between nodes 8 and 9 is the first that is above this average (reminiscent of the 

“elbow” rule in MDS mentioned previously). 

  

 

 

 

 

Figure 7: Differences in node heights between successive nodes (2-1, 3-2, …, 12-11) for 

the dendrogram of Figure 6.  Average difference is 0.262 and the node difference 9-8 is 

the first one that exceeds this value.  

We now compare this situation with what happens if we apply the same permutation test to the 

dendrogram shown in Figure 4, which was based on a randomly generated matrix but which 

exhibited apparent clustering.  The corresponding p-values for the nodes are:  

       0.664, 0.827, 0.458, 0.199, 0.047, 0.124, 0.370, 0.155, 0.072, 0.998, 0.849, 0.142 

which show no evidence of significant clusteredness or dispersion, as would be expected.   The 

fact that there is a single p-value of 0.047 would not be taken seriously, since there is the issue of 

multiple testing across the 11 nodes, and so significance levels should be lowered accordingly 

(see discussion in Section 8). 
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4.  Verifying the type I error and significance level of the test 

In order to check that the test leads to the correct probability of a type I error, we generated 1000 

data matrices from random permutations as described above.  For each of these we computed the 

node heights based on their hierarchical clustering and then the node heights based on a further 

999 permutations, that is we repeated the permutation test on 1000 random variations of the data.  

Choosing a significance level of  = 0.05 we counted how many times, out of the 1000 tests, the 

p-values at each node were less than or equal to 0.05, and expressed this as a proportion out of 

1000.  The results were as follows for the 12 nodes: 

          0.069, 0.057, 0.052, 0.045, 0.062, 0.058 0.049, 0.045, 0.038, 0.046, 0.047, 0.050 

which is consistent with the significance level of 0.05.    Similarly, counting how many were 

equal to 0.001, which is the lowest value one can get based on 1000 permutations, the results 

were: 

        0.001, 0.003, 0.001, 0.001, 0.001, 0.001, 0.002, 0.003, 0.001, 0.002, 0.002, 0.001 

also consistent with the significance level (in this case, one must obtain a value of 0.001 or 

higher).  

5.  Power study 

In order to investigate the power of the proposed permutation test, a series of data sets were 

generated from a pair of bivariate normal distributions with increasing separation: N(1, ) and 

N(2, ), where: 

 2 – 1 =  







1

1
   and    = 








10

01
   for  varying from 0 to 3 in steps of 0.1. 

For each value of  random samples of size 20 were generated from each of the pair of 

distributions, and this was repeated 100 times.   For each combined sample of 40 objects a Ward 
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clustering was performed and our permutation test (involving N=1000 permutations, as described 

previously) was applied to the second node from the top, which splits the 40 objects into two 

clusters.  Counting how many times out of a 100 the p-value was below 0.05 gives an estimate of 

the power of the test to detect two clusters, and this value is plotted on the left in Figure 7 as well 

as a smoothed version. Again one can see that at the null hypothesis ( = 0) the power is equal to 

the significance level 0.05.  The rise in power is slight until 1 standard deviation difference in the 

means and then increases rapidly, reaching a probability of 0.97 for  = 3.  For each of the 100 

data sets and the two clusters identified at the second highest node, the misclassification rate was 

also computed, and this is shown on the right in Figure 7.  The decrease in the misclassification 

rate is steady, reaching an average of about 1 in 40 for  = 3.  

 

 

 

 

 

 

Figure 8: Power function of the permutation test for samples from two bivariate normal 

distributions with increasing separation between their means, as well as the 

misclassification rate for the two-cluster solutions. 
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node with those obtained by permuting the cluster membership of the objects merged at each 

node. In this approach which is essentially a permutation test associated with MANOVA, the set 

of data associated with each object is conserved and the objects are simply randomly reassigned 

to one of the two clusters at that node.  The result is shown in Figure 9, with estimated p-values 

at each of the nodes tested.  Three nodes show significant splitting, thus four clusters are implied 

by this approach.    

 

 

 

 

 

 

Figure 9: Original cluster analysis of Figure 3, with p-values at each node computed by 

the method of Park et al. (2009).  The result implies four clusters. 

However, this approach has a problem with clusters merging few objects, which is clearly seen 
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approximately 0.030).  Similarly, where S23 merges with the cluster of three, the theoretical 

probability would be 0.25, estimated here as 0.242.  At the node where S24 merges with the 

cluster of four sites, there are five ways to re-assign labels, so the theoretical probability is 0.2, 

estimated as 0.012.  So this test would never be able to separate S24 at that node, simply because 

of the number of objects involved.  The same phenomenon is apparent in Figure 2(a) of Park et 

al (2009), where almost all the p-values at the lower nodes can be determined theoretically just 

from the numbers of objects in each cluster.  Even when the two merged clusters consist of 

several objects, the p-value can be reliably estimated from the numbers in each cluster.  For 

example, the p-value of 0.012 in Figure 8 at the node merging (S15,S9,S14) and 

(S24,S23,S13,S4,S19) must be an estimate of the probability 1/56 = 0.018, where 56 = 







3

8
, the 

number of ways of choosing 3 out of a set of 8. 

7.  Clusteredness versus dispersedness 

A simple example illustrates that the lack of clusteredness does not mean that there is no 

interesting structure in a multivariate data set.  The data set “bioenv” used in Greenacre 

(2010), also available online from www.multivariatestatistics.org, is an artificial data set of 

abundances of 5 species (a,b,c,d,e) at 30 sites (S1,S2,…,S30), where the abundances are 

related to two additional environmental variables, pollution and depth.   A hierarchical 

clustering of the sites, also based on the chi-square distances between sites, is shown in 

Figure 10 – the impression of at least two clusters is clearly given by this result.    

However, the permutation test gives the following set of p-values, from the lowest to 

highest nodes: 

  0.859,0.952,0.903,0.864,0.855,0.863,0.874,0.871,0.911,0.880,0.897,0.858,0.838,0.838,0.862 

  0.888,0.900,0.887,0.880,0.961,0.933,0.936,0.958,0.923,0.865,0.873,0.882,0.838,0.978 
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Figure 10: Cluster analysis of 30 sites of data set “bioenv”, based on the relative 

abundances of five species, the chi-square distance and Ward clustering. 

There is absolutely no sign of any clusteredness – none of the nodes have levels low 

enough to be significant.  The topmost node has a p-value for “highness” equal to (1000-

978+1)/1000 = 0.023, indicating significant variation within the whole data set, but with no 

clusters.  The MDS of the chi-square distances is shown in Figure 11, onto which have 

been regressed the five species and the two environmental variables as a biplot (see, for 

example, Greenacre (2010: chap. 2) – this is essentially a correspondence analysis of the 

abundance data, except that the sites have been equally weighted whereas in 

correspondence analysis they would be weighted proportionally to their marginal totals. 

A permutation test can be performed on the parts of variance on each dimension, equal to 52.4%, 

22.0%, 16.2% and 9.4%.  The data are permuted in the same way as before and the percentages 

of variance computed for each permutation.  The p-values are computed for each dimension by 

counting how many of the percentages are greater than or equal to those in the original analysis – 

these turn out to be (from first to fourth dimension) 0.015, 0.966, 0.892, 0.851, showing that the  
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Figure 11: MDS of chi-square distances between sites of data set  “bioenv”, showing 

five species and two environmental variables regressed on the two dimensions.  The 

percentage of explained variance on the two dimensions is 52.4%+22.0%=74.4% 

first dimension is the only one that is significantly non-random.  This agrees with the rule of 

thumb that chooses dimensions with variance larger than the average (more than 25% of the 

variance in this four-dimensional case).   

The conclusion about the structure in this “bioenv” data set is that there are significant 

associations amongst the species that emerge as the first dimension of the MDS, correlated with 

the pollution variable, but that there are no significant clusters of the sites.   
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the data.  Cases will cluster because they have similar description vectors across the 

variables, hence in order to generate null distributions each variable’s data are randomly 

permuted across the cases (i.e., columnwise permutations in the usual data format).  

Clusters of n objects generate n–1 nodes, each of which is being tested by our procedure.  

From the results of Section 4 it is clear that for 21 objects, for example, we would tend to 

find a significantly low node for random data if the significance level of 0.05 is used.  

Hence the significance level must be lowered accordingly, the most extreme example of 

which is to use the Bonferroni correction and work at a significance level of 0.05/(n–1).  

Notice that in the power study of Section 67, where the level at only one node was tested, 

the significance level could be maintained at 0.05.   

All computations were performed using the R package (R Development Core Team 2010).  

The R script is available from the author.  
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