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Abstract

Standard methods for the analysis of linear latent variable models often
rely on the assumption that the vector of observed variables is normally dis-
iributed. This normalily assumpiion (NA) plays a crucial role in assessing
optimality of estimates, in computing standard errors, and in designing an
asymptotic chi-square goodness-of-fit test. The asymptotic validity of NA in-
ferences when the data deviates from normality has been called asymptotic
robustness. In the present paper we extend previous work on asymptotic ro-
bustness to a general context of multi-sample analysis of linear latent variable
models, with a latent component of the model allowed to be fixed across (hy-
pothetical) sample replications, and with the asymptotic covariance matrix of
the sample moments not necessarily finite. We will show that, under certain
conditions, the matrix I’ of asymptotic variances of the analyzed sample mo-
ments can be substituted by a matrix Q that is a function only of the cross-
product moments of the observed variables. The main advantage of this is
that inferences based on § are readily available in standard software for co-
variance structure analysis, and do not require to compute sample fourth-order
moments. An illustration with simulated data in the context of regression with
errors in variables will be presented.



1 Introduction

Structural equation models have been widely used in economic, social and
behavioral studies to analyze the relationship among variabies, some of which
may be unobservable (latent) or subject to measurement error (see e.g.,
Bollen, 1989, and references therein). The assumption that the vector of
observed variables is normally distributed is typically used to justify the
estimation method used, to compute standard errors and to construct a chi-
square goodness-of-fit test statistic for the whole model. This normality
assumption is often violated, since in many applications data is skewed or
has non-normal kurtosis.

The typical approach to moment structure analysis is to use minimum
discrepancy (MD) methods to fit a structured vector of population moments
to the vector of sample moments (e.g., Browne 1984). Clearly, the asymp-
totic variance matrix I’ of the vector of analyzed sample moments s plays a
fundamental role in designing an efficient MD analysis and in assessing the
sampling variability of the statistics of interest. In the case of non-normal
data, the matrix I' involves the fourth-order moments of the observed vari-
ables. When the observed variables are normally distributed, I' is a function
of the first and second-order moments only. The form of I' under the nor-
mality assumption is denoted in the present paper as I'*. In the case of
analyzing an augmented moment matrix, the matrix I'* is singular and is the
difference of two terms: matrix €, a function of population cross-product
moments only, and a matrix T that is a function of population first-order
moments (see (15)). We investigate conditions under which the replacement
of I' by I'™*, or simply by §, gives asymptotically valid inferences when the
data is non-normal and hence I'* (or ) is different from I'. The results of
the present paper are developed in the general case of simultaneous analysis
of several samples of observations.

In multi-sample analysis of structural equation models, independent sam-
ples from several populations (groups) are analyzed simultaneously under
a common model, with parameter restrictions across populations; interest
focuses in studying the between-population variation of model parameters.
Multi-sample analysis gives also the possibility of integrating into a single
analysis sample information that arises from different sources, as in meta-
analysis studies (Hedges and Olkin, 1985). It has been shown that the pres-
ence of missing data in structural equation models can be dealt also using



a multi-sample analysis approach (Allison, 1987; Arminger and Sobel, 1989;
Muthén, Kaplan and Hollis, 1987).

The validity of inferences based on the normality assumption when the
data is not normally distributed has been called asymptotic robustness (An-
derson, 1987). Asymptotic robustness in linear latent variable models was
first investigated by Amemiya (1985), Anderson and Amemiya (1988), Ame-
miya and Anderson (1990) and Browne (1987), and further developed by
Browne and Shapiro (1987), Anderson (1987, 1989), Kano (1993), Satorra
and Bentler (1990, 1991) and Mooijaart and Bentler (1991). The above
mentioned work, however, was confined to one-sample analysis of covariance
structures. More recently, Browne (1990), Satorra (1992) and Satorra and
Neudecker (1994) extended asymptotic robustness issues to the more general
context of models with structured means as well as variances and covari-
ances of observed variables. The extension of asymptotic robustness to the
case of multi-sample analysis of mean and covariance structures was first
investigated by Satorra (1993a,1993b).

The present paper extends the work on asymptotic robustness in several
aspects. As in Satorra (1993a, 1993b), we consider asymptotic robustness
in the general setting of multi-sample analysis. Now, however, by adopting
Anderson-Amemiya’s device of a Taylor series expansion around a parameter
value that has some sample specific components, we are able to relax the
assumption of finiteness of the matrix I' and we can accommodate the case
of a latent component fixed across sample replications. ‘ ‘

The results to be developed in the present paper concern a wide class of
structural equation models that include regression with errors in variables,
path analysis models, econometric simultaneous equation models, multivari-
ate regression, and so forth. In fact the results are of direct relevance to
the general methods for structural equation models implemented in stan-
dard computer software such as LISREL of Joreskog & Sorbom (1989), EQS
of Bentler (1989), LISCOMP of Muthén (1989) and CALIS of SAS (1990),
among others. The class of models and estimation methods considered in
the present paper are more general than the ones considered in the previous
work on asymptotic robustness.

The plan of the paper is as follows. Section 2 presents the assumptions
and reviews the basic theory of moment structure analysis. Section 3 de-
velops the general results of asymptotic robustness. Section 4 provides an
illustration with Monte Carlo data of the performance in finite samples of
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the asymptotic results of the paper.

The following notation will be used. We denote by vec{a;;i = 1,...,1}
the vector formed by vertical stacking of the vectors a;, and by diag{A;;1 =
i,...,i} the biock-diagonal mairix formed wiili the square inatrices A; as
diagonal blocks. For any matrix A, vec (A) denotes the column vector formed
by vertical stacking of the columns of A, one below the other. When A is a
symmetric matrix, v (A) is the vector obtained from vec(A) by eliminating
the duplicated elements associated with the symmetry of A. We use the
"duplication” and "elimination” matrices D and D* (Magnus and Neudecker,
1993), such that vec (4) = Dv(A) and v (A) = D*vec(A), for a symmetric
matrix A. The matrices D and D% will be of varying order determined by
the context. The standard notation O,(1) and oy(1) for orders of magnitude
will be used. By {a;;i =1,...,1} are iid, we mean that the a; are mutually
independent and identically distributed random quantities.

2 Multi-sample analysis of moment struc-
tures

In this section we present the type of data analyzed, the models, and the
basic assumptions used in the paper. We will also review the standard the-
ory for multi-sample analysis of moment structures, under both asymptotic
distribution-free (DF) and normal theory framework. Four fundamental as-
sumptions will be discussed: Multivariate linear relation (MLR), Model as-
sumption (MA), Identification (I) and the Normality assumption (NA).

We deal with multi-sample data

{2giy1=1,...,ng, g =1,...,G},

where z,; is a p,-dimensional vector of observed variables associated with
individual 7 in group g, G is the number of groups, n, is the sample size of
group g, n = Y2, n, is the total sample size, and p = ¥, p,. Note that
the number p, of observed variables may vary across groups. Without lost
of generality, we suppose that the first component of z,; is a constant equal
to 1. The presence in z,; of this component equal to 1 allow us to structure
means as well as variances and covariances of the observed variables. We
assume that % — 7, when n — +o0, with the 7, being positive numbers.



For each group g (¢ = 1,...,G), consider the matrix of (uncentered)
sample cross-product moments

ng
Sg = Tl;l E zg,-zg,-'. (1)

i=1

Let s = vec{sy;9 = 1,...,G}, with s, = v(S5,), be the overall vector of
sample moments. Throughout the paper we restrict to the case where the
samples from the different groups are independent, so that the s, are sta-
tistically independent vectors. The asymptotic variance matrix I' of \/ns is
thus the block diagonal matrix

F:diag{w;l‘;;g= 1,...,G}, (2)

where I, is the asymptotic variance matrix of |/mgs,.
When the I, are finite, and under suitable regularity conditions (see, e.g.,
Chamberlain, 1982), an (unbiased) consistent estimate of T' is

I = diag{lf‘g;g: 1,...,G}, (3)
Ny
" 1 ng ,
L, = o —1 Z(dgi — 8g)(dgi — 8¢)s (4)
g =1
dgi = V(Zy-'zgtl)

The above matrix (3) will be called the asymptotic robust (AR) estimate of
I, to distinguish it from the estimate of I' based on the NA assumption to

be introduced below.
A key assumption for the theory to be developed in the present paper is

the following one.

ASSUMPTION 1 (MULTIVARIATE LINEAR RELATION, MLR) Forg =
1,...,G,

Lg
zgi = 3 Mgebgies (5)
=0

where £gi¢ is @ mge-dimensional vector of (observed or latent) variables and
I, is a p; X mge matriz of coefficients. Further,



1. the {£i0;t = 1,...,ny} are fized (across hypothetical sample replica-
tions) vectors such that

im — S u? = ¢y, (6)

a finite value, for each component u; of &yio. !

2. except (possibly) for € =0, the {€ge;1 = 1,...,n,} are iid, and mutually
independent across £ =1,...,L,.

3. the {&ir,;i =1,...,ng} are iid normally distributed.
When &, is stochastic, it has zero mean and finite variance matriz b,

Clearly, MLR implies
s, 5 s, (7)

when n, — +oo, where £, > 0 is a p, x p, (finite) positive semidefinte
matrix. The matrix &, will be called the matrix of population cross-product
moments . This matrix is assumed to be positive definite.

The above assumption MLR imply a structure on the matrix of population
cross-product moments. In the case of multi-sample analysis, the structured
population matrices are fitted simultaneously to the corresponding sample
matrices. In the present paper we restrict attention to the following moment

structures.
ASSUMPTION 2 (MOMENT STRUCTURE, MS) Forg=1,...,G,
Ly
Yy = Z nglq)ylngl" (8)
=0

where the matrices IIy, and ®, are of dimension p; x my, and mge X my,
respectively, and [y, = (1) and @y, = @, (7) are twice continuously
differentiable matriz-valued functions of a t-dimensional parameter vector
T.

Note that MS does not restrict the variance matrices ®,4,, except for @, .
It should be noted that equality (8) is implied already by MLR. Assumption

1By the Cauchy-Schwarz inequality, (6) implies that lim, 4o ng‘1 Z?;l Egiokgi0’ =
®,0, a finite matrix.



MS, however, structures the matrices Il,, and @4, to be functions of r. We
have stated MS independently of MLR since, in practice, MS can be analyzed
without the necessity of MLR to hold.

Assumnption 2 (MS) allows us to write £, = ,(J,), where I,(.) is a
twice continuously differentiable matrix-valued function of 9, = (7', 84"),
with ¢, = vec{dz;£ = 0,...,L, — 1} and ¢y = v(®y). Note that ¢y, is
not included in ¢,.

Let o, = v(X,); then we have

Lg
0 =Y [D*(Ty(r) ® Mee(7)) D) - (9)
€=0
Define ¢ = vec{¢y;9 = 1,...,G} and ¥ = (7',¢')’, then the vector 0 =
vec{o,;9 = 1,...,G} can be expressed as
o =a(¥),

where o(.) is a twice continuously differentiable vector-valued function of J.
We denote by t* the length of 9.

Given the sample moment matrices S,, estimation of the parameter vec-
tor ¥ is possible. A general method of estimation is weighted least-squares
(WLS) (see, e.g., Browne, 1984, Chamberlain, 1982, Satorra, 1989), where
the estimator of 9 1s defined as

9 = arg mingegls — o(9)]'V(s — a(d)], (10)

with a p x p matrix V that converges in probability to V, a positive defi-
nite matrix. The parameter space O is assumed to be a compact subset of
the Euclidean ¢*-dimensional space (R!"). For further use, we introduce the
vector of fitted moments 6 = 0(3), and the subvector 7 of ¥. Consider the
Jacobian matrix A = d0()/8c", and let A be the matrix A evaluated at
9=4. .

We now state a standard assumption of model identification that is as-
sumed to hold throughout the paper.

ASSUMPTION 3 (IDENTIFICATION, I) When s = o and V = V the
optimization problem of (10) has (locally) a unic solution ¥ that lies in the
interior of ©. Furthermore, the matriz A'V A is nonsingular.
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As has been shown elsewhere ( e.g., Satorra, 1989), under standard regu-
larity conditions (clearly implied by MS and I), 9 is a consistent and asymp-
totically normal estimator of 8, with asymptotic variance (avar) matrix given
by

avar(d | V,T) = n Y (A'VA)'A'VIVA(A'VA)L (11)

When in (11) we replace I, V and A by I', V and A respectively, we
obtain the so-called asymptotic robust (AR) (as no normality assumption
is involved) estimator of the variance matrix of 4. In practice, however,
one wants to avoid the use of I', since as (4) shows it involves computing
the fourth-order sample moments of the data. Further, the use of I' raises
concern about robustness in small samples. The use of I requires also further
regularity conditions, such as the finiteness of I'.

When VI'V = V, or TVl =T and A is in the column space of I' (see
Satorra and Neudecker, 1994), then clearly the variance matrix (11) simplifies
to

avar(d | V) =n"Y(A'VA)™L. (12)

In this case, we say that the corresponding WLS estimator is asymptoti-
cally optimal. See Satorra and Neudecker (1994) for detail discussion on the
asymptotic optimality of alternative WLS estimators in the context of linear
latent variable models.

We now introduce the normality assumption (NA), used very often to
draw statistical inferences in structural equation modeling.

ASSUMPTION 4 (NORMALITY ASSUMPTION, NA) Forg =1,...,G,
and £ = 0,...,L,, equation (5) holds with {{,;¢ = 1,...,n,} being iid
normelly distributed.

REMARK  Clearly, NA implies that {z,;;i1 = 1,...,n,} are iid normally
distributed.

Inferences derived under this assumption will be called NA inferences. In
fact, the major importance of the present paper is to develop results showing
that some of the NA inferences are valid even though NA does not hold.
This is of practical relevance since under NA the computation of the sample
fourth-order moments of the data can be avoided.

Now we review the formulae for asymptotic inferences under NA. The
asymptotic variance matrix I'; of \/ngs, based on NA will be denoted as I'};



and that of I' as I'*. Clearly, we have
I'* = diag{n;'T;;9=1,....G}.

When NA holds the asymptotic variance matrix of d is given by (11) with
['* substituted for I'.
Define also,

Q = diag{r;'Q;9=1,...,G}, (13)
Q, =2D%(Z,®%,)D", (14)

and denote by ) the estimator of € obtained by substituting =2 for m, in
(13) and S, for ¥, in (14). .
Under assumption NA, the matrix I' can be expressed as (see, e.g., Satorra

1992b)

=0-T7, (15)
where
T = diag{r,'Ts59=1,...,G}, (16)
Tg = 2D+(ﬂgﬂg’ ® l‘gﬂg,)D+I»
/J’g = 8(29))

with ” £” denoting mathematical expectation.
Under MLR and NA,

Hg = HgO/"’gOa
where g0 = £(£,0); thus,
T, = 2D*(Ilz ® Mo} (#gore0” ® Hgottgo')(go ® HgO),DH (17)
= A M,A},
where A, = D+ (Il ® o) D and My = 2D (pgopg0’ ® pgopigo’)D*'.2 Conse-
quently, when MLR and NA holds,

I* = Q- AoMA), (18)

2This is due to the fact that
(g0pg0' ® Bgopgo’) = DD (pgomgn’ ® pgo ® pgo'Y(DD*Y
as (u® u) = N(p® u) and N = DD+,



where M = diag{M,;9=1,...,G} and Ao = diag{Ag;9=1,...,G}.

Define also
Vo= diag{"g‘.{:;g.—_l,...,c}; (19)
* 1 - -
Vg = —2-D’(Eg '® g 1)D, (20)

and denote by V* the estimator of V* obtained by substituting “2 for 7 in

(19) and S, for I, in (20). The use of V = V*in (10) produces the so-called
NA-WLS estimators, which have been shown to be asymptotically equivalent
to the maximum likelihood estimators under NA (e.g., Satorra, 1992b). Note
that V* = Q! (and V* = Q7).

When NA holds and A is in the column space of I'*, the asymptotic
variance matrix (11) of the NA-WLS estimator reduces to

avar(d | V = V*) = n H(A'V*A)T, (21)

since T*V*T* = I'* (see Lemma 2 of Satorra, 1992b), and hence (12) is
attained. The standard errors extracted from (21) will be called the NA
standard errors. Clearly, the NA standard errors may not be correct when
NA does not hold.

When the z, are normally distributed, it can be shown (e.g., by direct
application of results of Meredith and Tisak, 1990) that the log-likelihood
function is an affine transformation of

G n
Fur = Y llog| %,(9) | +trace{ST,(#) ') ~log |5, | =peli (22

g=1

thus, the minimization of Fap = Fumi(9) yields the maximum likelihood
(ML) estimator of ¥. Since %fgf} = V* (see, e.g., Neudecker and Satorra,
1991), ML estimation is asymptotically equivalent to NT-WLS (Shapiro,
1985; Newey, 1988).

In addition to parameter estimation, we are interested in testing the good-

ness of fit of the model. Consider the following goodness-of-fit test statistic
Ty = n(s — &) (PV*P'Y*(s — ), (23)

where

~ ~

P=1-AQ'VA)AY, (24)
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with the superscript "+” denoting Moore-Penrose inverse. Denote by P the
asymptotic limit of P. It will be shown below that under MLR and MS, Ty

is asymptotically chi-square distributed with
| r = rank{PV*P') (25)

degrees of freedom (df). Clearly, when V = V*, an alternative expression of
I =Ty.is

T =n(s — §)(V* - V*A(A'V*A)A'V*) (s - &).

When T is finite, and the AR estimate I' (see (3)) is available, an alter-
native goodness-of-fit test statistic is

Ty =n(s — 6)(PTP)*(s - &). (26)

When MS and I holds (not necessarely MLR), Ty can be shown to be asymp-
totically chi-square distributed with the degrees of freedom of (25) regardless
of whether NA holds or not (e.g., Satorra, 1993b). As Tv is an asymptotic
chi-square statistic without the requirement of NA to hold (it requires only
MS and the regularity conditions for I’ to be a consistent estimate of T'), we
call Ty the AR goodness-of-fit test statistic.

Under NA single-group covariance structure analysis, Ty is Browne’s
(1984) residual-based chi-square goodness-of-fit statistic. The asymptotic
robustness of T} (for V = I,V* ) has been investigated in single-sample
analysis by Satorra and Bentler (1989), and for multi-sample analysis of
mean and covariance structures by Satorra (1993a, 1993b). It can be shown
that T** is asymptotically equivalent to the usual goodness-of-fit test statis-
tics developed under NA using the likelihood ratio principle (Satorra, 1992b,
1993b).

In the next section, we will show that some of the above formulae for NA
inferences retain their validity even when the assumption NA is violated, and
thus I' may be different from I'*. Furthermore, we will allow the possibility
even that I' is not finite.

3 Asymptotic robustness of NA inferemces

To develop the results of this section, we first need to obtain compact ex-
pressions for some of the statistics and parameter matrices introduced in the
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section above. In relation with (5), let

Hg = [HgO, Hglv sy HQLQ]

and
€gi = vec{€gie; £ = 0,...,Lg},
and write
Zg,' = Hgéy,-. (27)
Note that £, is a vector of length m, = 21[21 mgy. Clearly,
S, = 1,Q,11,, (28)
where
g
Qg = n;l Z {gt{gi,~ (29)
i=1

The matrix @, is composed of blocks
g

Qgrt = n_q_l Zégriégti,; (30)
=1

Qs Qo1 --- QgoL,

g,=| Y Im o G

Qor,o QoL - QoL,L,

Further, we decompose @, as

Qg :Q9+an (31)
where
5 diag{Qg¢,;€=0,...,Lg—l} 0
Qs = 0 0 ?
mngX‘mng
so that
0 Qe - Qgor,~1) QgoL,
_ leo 0 -. e le(Lg—l) leL,
Qs = : : : (32)
QoLs-10 Qg(Lo-11 - 0 Qo(Lg-1)L,
QgLy0 Qoryy - QoLyL,-1)  QgL,L,

11



This decomposition of ¢, implies
= HyQyHg, + Hg@yng,

hence, for s, = v(S,), we have
=V (ngany’) +v (Hgany’) = Zy(v Qg +v Qg)v (33)
where =, = D*(II, ® ;) D.
Let g, and g, be the vectors of unique non-zero elements of the matrices
Q, and @, respectively. That is, v (Q,) = J,4, and v (Qg) J,4,, where J,
and J are appropriate selectlon matrices with elements 0 and 1. Note that
g = j;V(Qg) (34)
and ) )
dg = J3v(Q). (35)
Consequently, (33) can be expressed as
= Eg% + égqgv (36)
Qg = " ; Y G}’

where Z, = Z,J, and 5, :__gj For brevity, let § = vec{gy; g = 1
G}, = = diag{Z;;9 = 1,...,G} and = = diag{=,; 9 =
(37)

§=vec{gy; 9=1
,G}, so that i
= 2§+ Z4.
Now let
&, = diag{®,; ¢ =1,...,Lg},
where the ®,, are the parameter matrices introduced in MS. In paraliel to
the decomposition of @ in (31), consider
&, =9, + 0, (38)
where 0
= 0
& — (mg—mgr )x(mg—mg,) ) 39
g ( 0 ®,r,(7) (39)
(40)

In analogy with (37), we have

(l]'

‘9~o
[ll'
©-

12



where ¢ = vec {(1_59; g-=~1,...,G} and ¢ = vec {¢.>g; g = 1,...,G}, with
¢y = JF®, and ¢, = J}®,. Note that owing to MS, Il; and @y, are twice
continuously differentiable matrix-valued functions of 7; therefore =, Zand ¢
are also twice continuously differentiable matrix- (vector-) valued functions
of 7.

Following Anderson-Amemiya approach (e.g., Anderson & Amemiya, 1988;
Amemiya & Anderson, 1990), we consider the "mixture” parameter vector

35(;), (41)

in which the components of 7 are population values and the components of
¢ are sample-specific. Denote by ¢ = o(9) the vector of fitted moments
evaluated at the "mixture” parameter value J = J. Due to Assumptions
MLR and MS, (37) and (40) imply

(s— &) ==(g - 9)- (42)

Now we consider the asymptotic variance matrix of various sample mo-
ments. Let u and v be asymptotically normal (vector-valued) statistics. De-
note by I', the asymptotic variance matrix of \/nu, and by Iy, the matrix of
asymptotic covariances between \/nu and /nv. Denote by I'; and I'}, the
analogous matrices computed under the assumption NA. Under this conven-
tion, Iy and I'* are the asymptotic variance matrices I' and I'* of v/ns under
distribution free (DF) and NA assumption, respectively. We note that un-
der MLR and MS, Lemma 1 introduced below guarantees that I'; is a finite
matrix.

When in addition to MLR and MS, NA holds, then the asymptotic vari-
ance matrix '} of /ns is finite and

[1h

I} =22 + =T + =15 =" + =1 .2 (43)
due to (37).2
Now before formulating the theorem with the results on asymptotic ro-
bustness, we present two lemmas that describe the asymptotic distribution
of the vectors ¢ and § when MLR and MS hold.

3In fact, in this case, I'* is the limit of the finite sample size variance of Vns.
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LEMMA 1 When MLR and MS hold,

V(G — ¢) = 0y(1) (44)

and i
(§— @) = 0p(1) (45)
Proof: See Appendix 0

Note that Lemma 1 relates the matrices Q, and ®, of (32) and (39)
respectively. The results of Lemma 1 allow also for some degree of model
misspecification, since it requires only that /n(§ — ¢) be bounded in prob-
ability, with an asymptotic mean that may differ from zero.* Combining
(42) and (44) we see that Lemma 1 ensures that \/n(s — &) is bounded in
probability; it does not ensure, however, the convergence on distribution of
of \/n(s — 0); the asymptotic variance matrix I' of \/ns need not be finite.

LEMMA 2  When MLR and MS hold,

Vng 5 N(O,T3), (46)

where I'} is the asymptotic variance matriz of V/ng under the NA assump-
tion.
Proof: See Appendix 0

Lemma 2 stablishes that under MLR and MS, NA inferences apply to ¢
(i.e. to the matrices Q,). The following Theorem states the major results of

the paper.
THEOREM 1 When MLR, MS and I hold,

1. 9 is a consistent estimator of 9.

2. \/n(s — &) is asymptotically normally distributed, with zero mean and
variance matriz determined only by 7, V and I'*.

3. \/n(#—7) is asymptotically normally distributed with avar(7) = avar(7 |
V,T*) (i.e. the corresponding submatriz of (11) with T' =T*).

4A sequence of local alternatives, however, is implied when such asymptotic mean is
finite but different from zero.
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4. when V = V* then avar(7) is the t x t leading principal submatriz
of A'V*A, and 7 is an efficient estimator within the class of WLS
estimators of (10).

5. the asymptotic distribution of the goodness-of-fit test statistic Ty of (23)
is chi-square with degrees of freedom given by (25).

Proof: See Appendix @

Note that NA is not listed in the conditions of the theorem; i.e., MLR
and MS are enough to guaranty that NA inferences concerning the residual
vector (s — ), the subvector 7 of J, and the goodness-of-fit test statistic

%, remain (asymptotically) valid despite of NA holds or not. Furthermore,
under MLR and MS we attain valid inferences when I is replaced by € (an
incorrect asymptotic variance matrix for \/ns even when NA is verified).
As it is illustrated in the next section, the validity of using {2 for statistical
inferences allows the use of standard software of covariance structure analysis
(such as LISREL of Joreskog & Sorbom (1989), or EQS of Bentler (1989))
to analyze mean- and covariance structures .

The theorem guarantees also that when MLR and MS hold, the NA stan-
dard errors of 7 coincide (asymptotically) with the AR standard errors based
on the matrix I' of fourth-order sample moments; the NA-WLS estimator 7
is asymptotically efficient; and T has the same asymptotic distribution as
the AR test statistic Ty. °

Clearly, this theorem encompasses the results on asymptotic robustness
that were mentioned in Section 1. In the next section we present a small
simulation study that shows the performance of the asymptotic results in
the case of finite samples and a specific model context. The specific model
set-up of the next section will serve also to illustrate details to be taken into
account when applying the results of Theorem 1.

5The results of the Theorem apply also to the case of a Fisher-consistent estimate J
of ¥ that is asymptotically equal to g(s), where g(.) is a smooth function. Obviously, the
results of the Theorem applies also in the case where the matrices S, and XL, are replaced
by the sample and population variance matrices.
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4 Regression with error in variables

This section presents a small Monte Carlo study where it is investigated
the performance in finite samples of NA-WLS inferences in the context of a
(multi-sample) regression with error in variables, and data deviating from the
normality assumption. We distinguish between de structural model, where
the true regressor varies randomly across sample replications, and the func-
tional model, where the true regressor is a set of values that are fixed across
sample replications. Regression with errors in variables is widely discussed
by Fuller (1987).

We consider the following regression model with errors in variables:

Y = a+p8z+¢(
X] = 46 (47)
Xg = 46

Two-sample data is considered with the variable X, missing in the second
subsample. This is a regression model in which Y is the dependent variable
and X; and X; are two indicators of the "true” regressor z. We distinguish
between the cases of z assumed "fixed” across replications (the functional
model) or considered to be random (the structural model). Note that this
model could serve in an applicaton of a regression with error in variables
where two replicates X; and X; are available for a subsample of cases (group
g = 1), while only one replicate is available in the rest of the sample (group
g=2).

We use the estimation method NA-WLS described in Section 3. In the
illustration, we are concerned with correct asymptotic inferences when no
distributional assumptions are imposed on the true regressor z, or on the
disturbance regression term (. However, normality will be assumed for the
distribution of the measurement error variables ¢, and ¢;. ¢ The measurement
error variances and the parameters a and 3 are set equal across groups. The
second-order moments of the random constituents of the model are assumed
to be finite. In the functional model case, we need to assume also that the
uncentered second order moments of z converge as n — +oo (Condition 1 in

MLR).

5Note that this assumption could be tested by exploring the distribution of X; — X,
in the subsample where both X, and X, are measured .
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4.1 The Functional Model

The equations describing the two-sample model are a measurement model
for the first group

0

1 00
1
_ | X 010 , €11 —
214 = Xl,zi = 010 ( 3}:/1,1 ) + €1.2i ’ = 11 <oy N, (48)
Yy, 0 0 1 bt 0

a measurement model for the second group

1 1 00 1 0
22, = X2'1,' = 0 1 0 Ta, + €2.1i , 1= 1, ...y, (49)
Y2, 0 01 Y, 0

and a structural equation that is common to both groups

1 0 00 1 1
g =10 00 Toi |+ Toi | t=1,...,ng, ¢g=12
Yy a B 0 Yo Co.i
(50)

Clearly, assumptions MLR of (27) hold with

I, = [Al(I—B)—17 [ O2xz ]} ’ (51)

12x2
= [natr- 5y [ ). 52
X
(1)(1)?) 1 00 0 00
A1=010,A2=010,B=000,
00 1 0 01 a g0

€1 = (1,216, C1r €1,000 €2,2:)
and
€26 = (1, 22,6, (2,60 €2,04) -
Thus we have the correspondence £,0i = (1,5:), &ui = ((i)'s €rai =
(€116, €1,2¢) and &22; = (€2,:)', for g = 1,2,
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Note also that assumption MS holds with the matrices II; of (51) and
(52) being functions of # and a, and

®9 = diag{@g,@o, Qg,lla ®g,22}a

where
4 bg.01
® o0 = g 9, ® i = ,
9,00 ( ¢g.01 ¢g,00 ) ) 9,11 ( ¢g.11 )
0
®, 2 = ( '/)(;1 Wz ) y Bag2 = ( 2% )

for ¢ = 1,2, where %, is the common variance of €;,; and ¢;,, ¥3; is the
variance of €;,;, and ¢y0; and @400 are respectively the first and second-
order moments of the unobservable variable z,, g = 1,2. We thus have the
12-dimensional parameter vector ¥ = (7', ¢')’ with

T= (Cl, ,3,1/)11,¢22)'

and

¢ = (Vh ¢1,01, ¢1,oo, ¢1,u, Vg, ¢2,01, ¢2,oo, ¢2,11)'-

4.2 The Structural Model

Here, z,4 is a random constituent of the model with mean 4., set equal across
groups in the present example. We have the measurement equations of (48)
and (49), and the structural equation common to both groups,

1 0 0O 1 1
Zgi = Hz 0 0 Tgi + Tgi— Hg y g = 1, 2. (53)
}/Q.i a 0 ,3 Yg,i Cg,i

Note that now a new parameter, the mean u, of z, has been introduced.
Here also MLR is satisfied with the same II; as in (51) and (52) and with
the appropriate substitution of the matrix B. Further,

fl.i = (I,Cl.ial‘l,i - ﬂx,ﬁl.mfl.zi)

and
£ = (1,C2,i, T2 — fhzy €210)
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We have the correspondence &0 = 1, g1i = (oir €20 = (215 — #), 130 =
(€116, €1.2i)', for g = 1,2, and £33; = €3,1;- The matrix ® in MS is

o, = diag{vy, @51, P2, q’9,3(7')}

where ®,; = (@g11) corresponds to the variance of (;, @42 = (¢,2) cor-
responds to the variance of z4, ®13 = diag {¥11,¥22} and ®,3 = ( v ) :
where ¥y, is the common variance of €, and €3, and v, is the vanance of
€21. Here ¥ = (7', ¢')’ has 11 components,

r = (a, By iz, Y11, ¥22)'

and

¢ = (Vl, ¢’1,11, ¢1,22, Va2, ¢2,11, ¢2.zz)'-

For both functional and structural models, v, is a "pseudo” parameter that
is unrestricted across groups and that has a population value of 1. Note that
in the case of the functional model it made no sense to restrict the means of
z, to be equal across groups.

The total number of distinct moments is 16 (= 432 + 3x4). Hence, the
number of degrees of freedom of the goodness-of-fit test statistic T*" is 4
(= 16 — 12) in the case of the functional model, and 5 (= 16 —11) in the case
of the structural model.

The Monte Carlo study generated 1000 sets of two-sample data according
to the data generating process described below and the NA-WLS analysis of
each two-sample data. A summary of the Monte Carlo results is presented
in Tables 1 (the functional model) and 2 (the structural model).

Non-normal data was simulated for the z’s and the (’s as independent
draws from the chi-square distribution with 1 df, conveniently scaled. The
{egai;1=1,...,n,} and {egaist = 1,...,ng}, g = 1,2, were generated as iid
draws from independent normal variables. Sample size was n; = 800 and
n, = 400 in the structural model example, and n; = 2800 and ny = 2200 in
the functional model example . The number of replications was set to 1000.
In the functional model, a fixed set of values of z were used across the 1000
replications.

Given the described data generating process, conditions MLR and MS
for Theorem 1 are clearly verified, for both the functional and structural
models. We thus expect asymptotic correctness of the NA standard errors
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for the 7 parameters (i.e., intercept and slope) and variances of ¢, and ¢, ;.
By Theorem 1, the goodness-of-fit test T** is also expected to be asymp-
totically chi-square distributed. Note that this asymptotic correctness holds
despite non-normality of {, (disturbance term) and z, ("true” values of the
regressor), and the consequent non-normality of the observed variables. Cor-
rectness of the NA standard errors for estimates of the ¢ type of parameters
(variances and covariances of non-normal constituents of the model) is not
guaranteed. Such expectations of robustness are corroborated with the re-
sults shown by Tables 1 and 2.

Comparison of the entries in column E(J#) with the true values demon-
strates the consistency of parameter estimates. Comparison of NA standard
errors (column E(se)) with the empirical standard errors in column sd()
shows the consistency of standard errors for all parameters except for the
variances of (, in the functional model, and variances of (, and z, in the
structural model. This consistency of standard errors for certain parame-
ter estimates is corroborated by inspecting the deviations from 1 in column
f—d((%. The inspection of the columns giving empirical tails of a z-statistic
shows also asymptotic normality and correctness of standard errors for the
estimates of T parameters. The empirical distribution of the goodness-of-fit
test shows also a reasonably accurate fit to a chi-square distribution with the
corresponding df. 7
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5 Appendix

In this Appendix we prove Lemmas 1 and 2, two additional Lemmas, and
the Theorem 1.

5.1 Proof of Lemma 1

Each component of § is of the form g, = ;‘; S0 u;v;. We will prove (44) by
showing that such a g, is asymptotically normally distributed. Hence the
whole vector \/ng is bounded in probability. Note that MLR and MS imply
at least one of the following conditions:

1. {u;} and {v;} are mutually independent iid sequences.

2. {u;} are fixed values such that limn,—. 4 ng‘l):?él u? = ¢, a finite
value and {v;} are iid.

3. {ui} and {v;} are iid normally distributed, and mutually independent
(not necessarely identically distributed).

In all the conditions above, whenever u; (v;) is random, it is of zero mean
and finite variance ¢, (¢,).

In case 1, we have that £(u;v;)? = £(u?)€(v?), hence applying the stan-
dard version of the central limit theorem (iid terms with finite variance), we
obtain the asymptotic normality of ,/m;¢,. The same standard version of
the central limit theorem will be used in case 3.

In case 2, the asymptotic normality of ,/n;g, is attained using the Linde-
berg-Feller version of the central limit theorem to the sum \/—I'T; o wv; (e.g.,

Serfling, 1980). This ends the proof of the result (44) of Lemma 1.
The result (45) claimed by Lemma 1 follows as a direct consequence of
applying the standard law of large numbers (e.g., Serfling, 1980) to the sums

1 g 2y,
n_g zl=l U,'U,. D

5.2 Proof of Lemma 2

Note first that ¢ collects the unique non-zero element of Qg, g=1,...,G
Given the structure of Q, displayed in (32) (the diagonal blocks Q,e¢, except
Qg.L,L,, are excluded from @, ), (30), and the conditions 1-3 of MLR, each
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component of the vector § has the form n,~! 72, u;v;, where the u; and v;
satisfy at least one of the conditions 1 to 3 listed in the proof of Lemma 1.

Let 4. = n;' 302, wiv; and §g = n;' T02, wih;, with identities possibly
among the u;, v;, w;, h;. Note that the elements of the matrix I'; of Lemma 2
are the covariances (I';, ;,) among the ¢, and gg. We have

|
Fia-fﬁ =nll.r-+r-loo7r9 cov (\/n_y;Zi uivi, r—g; h)

= lm =/ cov( Zu Vi, —— Zw, )
n—+co g =1 9 =1
ng
= lm =] — Z cov (u;v;, wity) -
n—too g Mg i=1

When ¢, and ¢, correspond to different groups then, clearly, l4ags = 0,
the same value as under NA. Further, when all the variables u;, v;, w; and h;
are elements of {; 1, (and therefore are normally distributed), then obviously
['3..45 15 the same as under NA.

We are left with the case where at least one of the variables u;,v;, w;, A;
is not a component of £, ; . Clearly, we have

cov(uv;, wih;) = E(uiv;wihy)
since either £(u;v;) or £(w;h;) are zero. Further
S(u,-v,-w.-h;) = S(u;w;)g(vihi),

since when u;, v;, w;, h; are all random and not all of them elements of &9.Lg>
then either (u;,w;) is statistically independent of (v, h;), or g, or g is an
element of Qg Lz,

Consequently,

F‘icnﬂﬁ 11m7r - Z g U w; g( h) = 7r_q—1¢uw¢uh

9:_

where ¢, = £(u;w;) when u; and w; are random, and ¢,,, = lim, g=+400 n"1

when the u; and w; are sequences of fixed values. Thus, only the elements
of the cross-product matrices ®,, are involved in the asymptotic covariances
I'30.4> 1-€ in this case also I';, ;, is the same as under NA. ]

oo uw;

(P T]
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5.3 Proof of Theorem 1

The vector s converges in probability to o, the vector of population moments,
as n — 4oco . Since F(s,0(9)) = (s — a(9))'V(s — a(9)) is a continuous
function of ¥, the estimator ¥ converges in probability to the population
value 9. Since the mixture vector J also converges in probability to the true
value ¥, we get that 9 — 9 = op(1).

Under assumption MS and I, the familiar implicit function theorem (e.g.,
Dijkstra, 1983) states that

VR —9) = (A'VAY'A'V /(s — &) + 0,(1), (54)

where A = a” " 8e()" | _s. Thus, using (42), we have

V(d —9) = (A'VA)T'AVEVn(7 - ¢) + op(1). (55)

Consequently, since /n(7 — 7) = Jy/n(d — 9), where J is a 0-1 selection
matrix, we obtain

Vn(f ~1) = WVn(g - ¢) + 0,(1), (56)

where W = J(A'VA)~'A'VZ. The fact that A — A = o,(1) and (44) were
used to justify the replacement of A by A. 8

The result (56), combined with (44) and the fact that = and A are func-
tions of ¥ only, guarantees that \/n(7 — 7) converges to a distribution that
is determined by ¥, V and the asymptotic distribution of g.

To proceed with the proof of the theorem, we need two additional Lem-
mas: Lemma 3 which proves that under MLR and MS the residual vector
v/n(s — &) is bounded in probability as n — -+o0o0; and Lemma 4 which show
that the asymptotic distribution of the residual vector is determined by the
asymptotic distribution of § (recall the asymptotic distribution of ¢ stated
in Lemma 2).

LEMMA 3 When MLR and MS hold,
V(s —5) = 0y(1). (57)

8Note that we can replace A and A by A when the corresponding multiplying factor is
bounded in probability. This boundedness condition is crucial in the present paper, since
we do not assume, for instance, that \/n(§ — ¢) is bounded in probability.
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PrOOF  Given the definition of é, we have

A'V(s - 6) = 0;
hence
where ) o .
P=1-A(A'VA)TAV
is an idempotent matrix orthogonal to A (PA =0) .
Given MLR and MS, identities (37) and (40) are satisfied, and since

= =0, we have

Now, given that \/n(7 — 7) = O,(1), and that Z is a continuously differen-
tiable matrix-valued function of 7, we have

VRPZE = VaPZ 4+ 0,(1) = O,(1).
Consequently, replacing ZbyZ,° we get

Pvn(s—6) = VaPZ7-vaPEs+0,(1)
= PE\/E(J’ - ‘7) + Op(l) = Op(l),

which combined with (58) concludes the proof of the Lemma. ]
LEMMA 4  When MLR and MS hold,
P\/n(s — 6) = P=v/n(§ — ) + 05(1). (61)

Proor We have

9To justify the replacement of z by = and to guarantee that \/ﬁ(d—> — g) is bounded in
probability, the result v/n(# — 7) = Op(1) was used
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where & = 0'(5) and J = (7#'.4")'. Denote by <z~S the estimator of ¢ determined
by 7. Then, using (40),

(6 —6)=Z(d- ).
Since, A'é = 0, we have
P/n(s — &) = Py/n(s — &) — Pvn(é - &). (62)

Note that ) L .
0=05+A(0-9)+o0,(9 —7I)

implies

-

Qi

V(e — &) = AVa(d - 9) + 0,(1),
where the result \/5(19 — ) = 0,(1), implied by \/n(7 — 7) = Op(1), was
used. We can thus write (62) as
PUn(s—6) = Pya(s—35)— PAVA@ —9) +o,(1)
= Pya(s—5) — PAVa@d — 9) + 0p(1).

Now since . . . .
PAVR(9 —9) = PAVn(Y - 9),
(we used again that \/5(19 — 1) is bounded in probability) and (57), we obtain
Byi(s - &) = P/als - 5) +0,(1). (63)
Combining (63) with (42), we obtain

Pyn(s—6) = PEZVn(§—¢)+o0,(1)
= PEVn(g- @) +05(1),

since \/n(§ — ¢) is bounded in probability, which completes the proof of the
Lemma. o

Lemmas 3 and 4 allow us to proceed with the proof of Theorem 1. Com-
bining the result (61), equality (58), and Lemma 2, we deduce the claim
of the theorem with regard to the asymptotic distribution of the residual
vector y/n(s — &). Now we will concentrate on the statments of Theorem 1
concerning the asymptotic distribution of 7.
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From (40) we obtain

. o= e ovec= -
AN { (61.?)_'_\(}, @1)—013 ,:-J,
thus, due to (45),
. .1, dvec=
A-A= ((q—d’)@])—é;,—,o = op(1).

Note also that, from (9), there is a reordering of the parameters such that
the matrix A partitions as A = [A,, Ag], where Ag is the same matrix as in
'™ of (18).

The delta-method applied to (56) and Lemma 2, gives the following ex-
pression for the asymptotic variance matrix of 7:

;= Wh,W' = WIIW' =

J(A'VA)TA'VTIVAA'VA) LT, (64)

where (43) and W = J(A'VA)"'A'VZ = 0 where used. Finally, given
A = [A,, Ag] and (18), it holds that

[: = J(A'VA) IA'VAVA(A'VA) T,

which is the asymptotic variance matrix of 7 claimed in 3 of Theorem 1.
Using the well-known result that, for any non-negative matrix V, '°

(A'VA)TTAVAVA(A'VA)T > (A'QTTA)T,

we obtain

[: > J(A'QA)Y. (65)

The statement of asymptotic efficiency claimed in 4 of Theorem 1 is obtained
directly from (65) by recalling that equality is attained when V = Q7' ( V*).

10Here the notation A > B, with A and B matrices, is used to denote that A — B is a
positive semidefinite matrix.
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This concludes the proof of the results concerning parameter estimates. !!

Now we consider the results concerning the asymptotic distribution of
Ty. First note that the asymptotic distribution of P\/r—z(s — &) is the same
as the asymptotic distribution of P/n(s — ), since y/n(s — &) is bounded
in probability, and ¢ is consistent for ¥. Lemma 4 implies that P/n(s —
&) is asymptotically normally distributed, with asymptotic variance matrix
PEI‘,,—.::':’P’. Under MS and MLR,

PET,Z'P' = PETIE'P' = PIP' = PQP,

where (43), (18) and PAo = 0 where used. Note that PQP' is a consistent
estimator of PQP’; thus, the Wald test statistic (see, e.g., Moore, 1974, for
details on constructing Wald type test statistics)

Ty = n(s — &) P'(PQP)*P(s — 6) £ n(s — &) (PP (s — &)

has the asymptotic distribution claimed in 5 of Theorem 1. 2 @]

1 These developments apply also to the case of a Fisher-consistent estimate J = g(s) of
Y, where g¢(.) is a smooth function. Effectively, assumption MS allows us to write

Vi(d = 8) = AVA(s - ) + 0p(1),
and, consequently,
V(F = 1) = J*Va(d - 8) = J*Ava(s — &) + o,(1),

which implies the Lemma 4 directly.
12Note that to prove Theorem 1 it was not needed that I', is a finite matrix.
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Table 1: Results of the simulation study. Structural model: ¥ = a + 8z +
¢, X1 =z+¢, X; = 2+ €. Two subsamples of sizes n, = 800 and n, = 400
with the equation corresponding to X, missing in the second subsample.
Distribution of z and ( are independent chi-square of 1 df. Distribution of
¢; and €, is normal. Number of replications is 1000.

Estimates and standard errors

Parameters E(d)® sd(d)®  E(se) % 5% ¢ 10%

Var(e;)= 1 1.00 015  0.09 063 2240 30.20

Var(zi)=1 099 014 006 042 4390 52.00
Var(ul) =0.3 030 002 002 104 390 10.00
Var(u2) =04 040 003 003 096 690 11.90

B =2 2.00 0.05 0.05 0.98 5.10 9.30
a =1 0.99 0.16 0.16 0.99 490 10.40
p =3 3.00 0.03 0.03 0.97 6.40 10.80

Var(ez)=1 0.98 0.23 0.16 0.68 17.80 26.20
Var(zz)=1 0.99 0.19 0.08 0.45 38.10 45.90
Goodness-of-fit test, T** (df=5)

Mean Var 1% 5% 10%
5.13 10.49 1.10 4.90 9.80

¢ empirical mean across the 1000 replications
b standard deviation across 1000 replications
¢ empirical mean of the NA se

4 5% and 10% (nominal) two-sided tails for z-statistic ai:—‘%
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Table 2: Results of the simulation study. Functional model: ¥ = a+ 8z +
(, X, = z+ ¢, Xy = z + ¢. Two subsamples of sizes n; = 2800 and
ny = 2200, with the equation corresponding to X, missing in the second
subsample. Distribution of the disturbance term e is chi-square of 1 df.
The values of the z’s are fixed across replications (and were generated as
independent values from a uniform distribution). Distribution of ¢, and ¢ is
normal. Number of replications 1s 500.

Estimates and standard errors

Parameters E(d)> sd(d)® E(se) % 5% ¢  10%

Var(e;) =1 1.00 0.08 0.05 2.66 24.60 31.60
up) = 0.3 0.30 0.01 0.01 1.01 6.00 11.20
uz) = 0.4 0.40 0.02 0.01 1.08 5.40 10.80
g =2 2.00 0.01 0.01 103 640 10.60
a=1 1.00 0.02 0.02 1.01 5.80 11.60
Var(ez) = 1 1.00 0.10 0.08 1.56 10.60 17.60
Goodness-of-fit test, T** (df=4)

Mean Var 5% 10% 20%
4.02 8.14 4.8 10.6 21.4

® empirical mean across the 1000 replications
b standard deviation across 1000 replications
¢ empirical mean of the NA se
]

4 5% and 10% (nominal) two-sided tails for z-statistic pore 3
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