(wr)
e
SY

Uy Y

72

UNIVERSITAT POMPEU FABRA G

The PQ-Median Problem: Location and Districting of
Hierarchical Facilities. Part 1

Danicl Serra

and

Charles ReVelle

Economics working paper 12. April 1992




The PQ-Median Problem:Location and Districting

of Hierarchical Facilities
Part | *

Daniel Serra
Universitat Pompeu Fabra

and
Charles ReVelle
The Johns Hopkins University

April 1992

*This research was funded by the ”Instituto Municipal de Investigacions Médiques” (IMIM),
Barcelona (SPAIN) and the Fondo de Investigacién de la Seguridad Social (FISS), grant #
88/1493. The research was conducted in part using the Cornell National Supercomputer Facil-
ity, a resource of the Center for Theory and Simulation in Science and Engineering at Cornell
University, which is funded in part by the National Science Foundation, New YorkState, and the
IBM Corporation and members of the Corporate Research Institute. The authors are grateful
to FISS and IMIM for the funds given, and to CNSF for the access to the Cornell facility which
has helped to make this work possible.

UNIVERSITAT POMPEU FABRA

A




Abstract

To achieve an efficient and effective hierarchical location system, it is neces-
sary to obtain not only an efficient set of facility locations, but also an efficient
districting of the catchment areas, since these areas will be the ones to benefit
from the services provided by the located facilities. In seeking an effective rela-
tion among the different levels in a hierarchy of facilities, all the cells assigned
to a particular facility at one hierarchical level should belong to one and the
same district in the next level of the hierarchy. This property leads to a ”co-
herent” districting structure. The research presented here concerns the optimal
location and districting of hierarchical facilities in a network. A linear integer
model that locates facilities in a two-level hierarchical system is presented in
this paper: the pq-median model minimizes average distance to the closest fa-
cility in each hierarchy, while coherence among the levels of the hierarchy is
enforced. Solution methods and computer times are provided.




1 Introduction

The past three decades have witnessed an explosive growth in the field of network-
based facility location modeling. As Krarup and Pruzan (1983) point out, this is
not at all surprising since location policy is one of the more profitable areas of
applied systems analysis and ample theoretical and applied challenges are offered.
Location-allocation models seek the location of facilities and/or services (e.g.
schools, hospitals, warehouses) 50 as to optimize objectives generally related to the
efficiency of the system or to the allocation of resources.

Most of the research to date has focussed on facilities that are assumed to be alike
or of a single type. Nevertheless, it is widely accepted that many facility systems
and institutions are hierarchical in nature, providing several levels of service.
More specifically, a hierarchical system is one in which services are organized in
a series of levels that are somehow related to one another in the complexity of
function/service.

The organizational structure of hierarchical systems may vary considerably. There
may be institutional ties between levels, whereby lower levels are administratively
subordinate to higher ones (e.g., health care delivery systems, banking systems).
On the other hand, there are several hierarchical systems that have no such inter-
level linkages, different levels being distinguished solely by the range of goods
and/or services they provide (e.g., educational systems, production-distribution
systems, waste collection systems) (Hodgson 1986).

A number of objectives and constraints may be stated for an efficient siting of
hierarchical facilities. First, facilities may be located to attract the maximum
utilization of services or generate the maximum demand for goods (Getis and Getis,
1966); Secondly, the number of hierarchies and facilities are to be the minimum
possible. Third, a facility may have a threshold requirement in its location and can
be classified into a range of orders on the basis of the size of the threshold
requirement.

A fourth consideration in the design of hierarchical location-allocation systems is
that the services otfered by the facilities are nested; that is, a level k facility offers
services of type k, k-1,k-2,...,1. For example, in a health care delivery system,
large hospitals supply to the population all the health care services offered by
smaller hospitals as well as the less frequently required specialty and
superspeciality services that need more sophisticated equipment and skilled
personnel.

To achieve an efficient and effective hierarchical system, it is necessary to obtain
not only an efficient set of locations but also an effective districting of the
catchment areas, since these areas will be the ones to benefit from the services
provided by the located facility (Bach 1980, Serra 1988). Pezzella et al. (1981)
point out that one of the basic problems in the organization of social services is the
division of the territory under study into a series of districts, each of which




provides an integrated and possibly complete set of services to its assigned
population. Districting can be defined as the process by which a given area (e.g.,
a state) is partitioned into small areas (districts) each of which is assigned (a) given
function(s) or service(s). Alternatively, districting can be defined as the method
of dividing a region into sub-regions according to some organizational schema. A
district is generally formed by a unitary assignment of smaller subdivisions (e.g.,
census tracts), to a larger division.

Districts often form the basis of government through election districts and provide
for the orderly and efficient availability of services, such as health care, refuse
collection, police patrols, and the allocation ot children to schools.

Most districting plans are hierarchical in nature. Districts created at one level of
the hierarchy may be the building blocks for larger districts at the following level.
For example in a health care districting plan, a catchment area corresponding to
a large hospital may be disaggregated into smaller areas, each one of those
belonging to a basic health care center. The criteria of contiguity, compactness
and relative population equality are important across levels, i.e., they are expected
to occur at each level. A fourth criterion, specific to hierarchies is "coherence”.

The coherence property, which creates an effective relation between levels, may
be thought in the following way: If an area X is assigned to a facility A at level k,
and this facility A is assigned to another facility B in the next level (k+ 1) then the
area X is also assigned to the same facility B in level k+1. This "transitive"
property of some hierarchical systems leads to a "coherent” districting structure.
All areas assigned to a particular lower level facility are assigned to one and the
same higher level facility. Figure 1 presents two districting situations. The top
figure represents a region with three districts, represented by circles. The first
district is completely included in the second district, and the second one is entirely
included in the third district. This region is districted with coherence.

The bottom picture in Figure 1 presents a non-coherent districting pattern: neither
district A nor district B are included in their next higher hierarchical district. If
coherence is not observed, then there may be regions that are not continuous, that
is, the areas of a region assigned to a facility at level k may be associated with
more than one facility at level k+1.

Consider the health care delivery system where there is generally a referral
between levels, that is, users of a given level are sent to another level for more
specialized treatment. At each successive level, the amount of demand is at least
partially determined by the number of patients referred trom lower levels in the
hierarchy. The patient, once directed to a larger hospital for specialized treatment,
will in a non-emergency situation generally go back to his home, make an
appointment, and then go to the hospital. In such a system, the most important
feature from a location viewpoint is the distance or travel time between the demand
area and the nearest facility at each level of the hierarchy, not the distance or time
between the facilities themselves.




Figure 1: Non-Coherent Versus Coherent Districts
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This paper proposes a new formulation to address the issue of coherence in a
locational hierarchy, a task not previously undertaken to the authors’ knowledge.
While location and districting models have traditionally been studied separately,
their integration promises improvements in the optimal allocation of resources in
space. This research seeks to link coherence and efficiency within a single
hierarchical model.

Two hierarchical levels are considered in this paper: the first level corresponds to
facilities that offer basic services and cover a smaller amount of area (or
population) relative to the second level. Hence it is assumed that there will be a
larger number of first level facilities than second level facilities. For ease of
notation, facilities belonging to the first level will be called type A facilities, and
those pertaining to the second level will be designated as type B facilities. The
services offered by type B facilities are nested, that is, they also include the
services offered by type A facilities. Following the classification presented by
Narula (1983), the model locates coherent facilities with successively inclusive
services.

The pg-median model locates two types of facilities by combining two p-median
formulations. Each level has the objective of minimizing the average distance or
travel time from the demand areas to the nearest facility whilst ensuring coherence.
Hence, a trade off between access to each hierarchical level is expected.




2 Literature review

The p-median model locates p facilities such that the average distance from the
users to their closest facility is minimized. In a hierarchical setting it has been
generally used to located a given number of facilities for each level, one at a time.

Calvo and Marks (1973) constructed a multiobjective integer linear model to locate
multi-level health care facilities: the model minimized distance (travel time),
minimized user costs, maximized demand or utilization, and maximized utility. It
was based on assumptions that (1) users go to the closest appropriate level; (2)
there is no referral to higher levels; and (3) all facilities offer lower level services.

Tien et al. (1983) argued that the approach taken by Calvo and Marks resulted in
a locally inclusive location pattern. In order to resolve this deficiency, they
presented models derived from Calvo and Mark’s formulation: (1) a successively
exclusive model (i.e., non-nested) and a (2) successfully inclusive model. They also
introduce a new feature whereby a demand cannot assign to a place more than once
even if additional service levels may available at that point. Both models, unlike
Calvo and Marks’, can be solved by standard integer programming solution
procedures. Mirchandani (1987) extended the hierarchical p-median formulation
of Tien et al. model, allowing various allocation schemes by redefining the cost
parameter in the objective.

Harvey et al. (1974) used a p-median formulation to determine the number and
optimal locations of intermediate level facilities in a central place hierarchy. The
p-median model was used in one-level problem, but consideration was given on the
interaction among lower and higher levels.

Narula et al. (1975) developed a nested hierarchical health care facility location
model that located on a network a fixed number of facilities. At each level, the
objective was to minimize patients’ total travel. They considered referrals between
levels, based on the proportion of patients treated at each level. Narula and Ogbu
(1979) gave some heuristic procedures tor the solution of the problem. Narula and
Ogbu (1985) solved a two-level successively inclusive mixed-integer p-median
problem using the same objective and referral pattern.

Berlin et al. (1976) studied two hospital and ambulance location problems. The
first one focused on patient needs by minimizing (1) average ambulance response
time from ambulance bases to demand areas and (2) average distance to hospitals
from demand areas. The second model added a new objective to take into account
the efficiency of the system: minimization of (3) distance from ambulance bases to
hospitals. It was named the "dual-facility" location problem: the locations of both
hospitals and ambulance depots were basic to determine response times. It is
interesting to note that although two levels are defined (stations or depots where
ambulances sit, and hospitals), the formulation can be decomiposed into independent
hospital and ambulance location problems and solved optimally. It is not a clear
hierarchical model since relations among levels differ from the traditional
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regionalized models.

Fisher and Rushton (1979) and Rushton (1984) used the average and maximum
distance from any demand area to its closest health care center to study and
compare actual and optimal hierarchical location patterns in India. The Teitz and
Bart heuristic was used in three ways to determine hierarchies: constructing top-
down hierarchical procedure (same as Banergi and Fisher 1974), constructing a
bottom-up hierarchical procedure (opposite of top-down), and constructing a
hierarchical procedure where the first step was to locate a middle-level of the
hierarchy optimally, and then proceed as the bottom heuristic for upper levels, and
use the top-down heuristic for lower levels.

Tien and El-Tell (1984) defined a two-level hierarchical LP model consisting of
village and regional clinics. It is a top-down formulation in the sense that the flow
patterns start at the hospitals. That is, health professionals go from hospitals to
village centers. Both village and regional clinics are located using a criterion of
minimizing the weighted distance of assigning villages to clinics and village clinics
to regional clinics. The model has been applied to 31 villages in Jordan.

Hodgson (1984) demonstrated that the use ot top-down or bottom-up techniques to
locate hierarchical systems generally leads to suboptimal locational patterns. By
a top-down (bottom-up) technique is meant the location first of the highest (lowest)
level of the hierarchy and then successive location of facilities in the following
level. Hodgson used both the p-median model and a formulation based on Reilly’s
gravitational law (Reilly, 1929) to compare both techniques with the simultaneous
location of all hierarchies.




3 The PQ-Median Model

Coherent hierarchies have two main characteristics that distinguish them from
conventional hierarchies. The first one is related to the relationship between the
levels of a hierarchy. Basically, a hierarchy is coherent if all population areas
assigned to a particular k level facility are also assigned to one and the same (k +
1) level facility. The second characteristic is that the access time between the
population and each of the hierarchical levels is accounted. Both these features
must be reflected in the formulation of a coherent hierarchical location model.

The p-median problem seeks to select p facility sites from among n eligible
locations to minimize the average distance from the population locations to their
closest facility. An interesting characteristic of this formulation is that its solution
determines the catchment areas of each facility located, since it uses assignment
variables that express the linkages between population areas and designated
facilities. This feature is very useful in the construction of hierarchical coherent
models.

Suppose one solves a p-median model and a g-median model, one for each level
of the hierarchy, but with no connections whatsoever between the models. The
outcomes will be that all population areas are assigned to their closest type A
facility and also to their closest type B facility; average distance is minimum in
both cases. However, it is very likely that the population areas that are assigned
to any particular type A facility will not all be assigned to the same type B facility,
i.e. the solution is not coherent. In addition, in this case, type B facilities cannot
be considered as offering type A services since they were not taken into account
when solving the p-median problem for the type A facility. The pq-median model
will attempt to resolve these two issues.

The pg-median model combines two p-median formulations, one for each
hierarchical level. The relation between each level is expressed by two factors:
(1) that type B facilities also offer type A services; hence, a given area can be
assigned to a type B facility for type A services (successively inclusive services),
and (2), that all areas assigned to a type A facility must be assigned to one and the
same type B facility (coherence condition). The number of facilities to locate is
known: p type A facilities and q type B facilities are located where p > q . The
mathematical formulation of the pg-median model is as follows:

Min A =Y Y adyx, Min B =Y % ady,

i€l jed iel kek




Subject to:

Yox, =1 Viel
jed
Y v =1 viel
kek
Yoz =1 vjeJ
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Y $ Vi Viel VkeK
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>4 =p
jeJ
dvi=4
kek
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kKK = index and set of possible locations for type B
facilities;

J, = set of possible locations for type A facilities only;
itisJ - {J N K);

Js = set of possible locations for type A facilities and
type B facilities; it is J N X;

Ky = set of possible locations for type B facilities only;
itisK-{J n K);

a = population at demand area i;

d; = distance between i and j;

p = number of type A facilities to be located;

q = number of type B facilities to be located;

X; = 1, if demand node i is assigned to a facility at |

for type A services; 0, otherwise;

Vi = 1, if demand node i is assigned to a facility at k
for type B services; 0, otherwise;

Zy = 1, if type A facility at j is assigned in the
hierarchy to a type B facility at k; 0, otherwise;

u; = 1, if there is a type A facility at j;
0, otherwise; and

Vy = 1, if there is a type B facility at k; 0, otherwise.

Both of the objectives correspond to the objective used in the classical p-median
formulation. The first objective minimizes the total population weighted distance
from demand areas to type A services (whether found at type A or type B
facilities). The second objective minimizes the total population weighted distance
from demand areas to services which are only found at type B facilities.

Demand areas are assigned to one and only one facility for type A services and to
one and only one type B facility for type B services by virtue of constraints (1) and
(2) respectively. Similarly, constraint group (3) forces a type A facility to assign
to one and only one type B facility. This assignment creates the functional link in
the hierarchy. Constraint set (4) says that if demand area i is assigned for level A
services to node j (j € J,), then this node must a have a type A facility. Observe
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that this node is not a candidate for a type B facility as it is capable of housing
only a type A facility. If node j is candidate for both type A and type B facilities,
then constraint type (5) is used; this constraint allows a node i to assign either to
atype A or to a type B facility for its type A services. That is, demand nodes may
assign to a type B facility for type A services if this assignment gives a better
overall objective than assigning to a type A facility for the same services. If node
j can only have type B facilities (j € Kj) then node i will be free to assign to it for
type A services only if a type B facility is sited there (constraint group (6)).
Observe that constraints (4), (5) and (6) together account for all possible
assignments to type A services.

Constraint (7) says that if demand area i is assigned to node k, k in K, for type B
services, then there must be a type B facility located at node k. Constraints (8)
enforce "coherence" for the location pattern. All centers assigned to the same type
A facility are also assigned to the same type B facility. Mathematically this
constraint works as follows: if x; is 1 (i is assigned to node j for type A services)
and z, is 1 (type A facility located at node j is assigned to a type B facility located
at k) then y, must be one (demand area i is assigned for type B services to the type
B facility located at k).If x; and/or z; are equal to 0, then y, will not be equal to
1, since there is only one assignment allowed by constraints (1), (2) and (3), and
this one will occur only when x; and z; equal 1. Finally, constraints (9) and (10)
determine the number of type A and type B facilities to be located respectively.

This formulation is specific for a coherent facility hierarchy with successively
inclusive services, which is the more standard type of coherent hierarchy.
Nevertheless, the model can be transformed to accomodate other types of secvice
hierarchies.

If the facilities of the hierarchy present successively exclusive services, that is, if

type B facilities do not offer type A services, constraints (5), (6) and (7) can be
replaced by the following constraint set:

X, s 4, Viel YjeJ  (12)

Now demand area i has to assign to a type A facility for type A services, since
type B facilities are not offering this class of service.

The formulation can also be modified to consider locally inclusive services, that
is, a type B facility offers type A services only to the node where the facility is
located. In this case, constraints (5) and (6) are replaced by the following
constraints:




X, < u + v VielNd,, Vjed,  (13)
X, s v, VielNK, VjeK,  (14)

Constraint groups (13) and (14) allow demand area i to assign to a type B facility
for type A services if and only if this facility is located at the same demand area
i. In any other case the demand area will be necessarily assigned to a type A
facility for type A services.

Note that the pg-median model can be transformed into a hierarchical pg-median
with maximum distance constraints by substituting h; in both objectives for the
parameter d;, where h; is equal to a large number M if the distance between areas
i and j is greater than a given distance standard, and d; otherwise.

The censuses of most cities have their census tracks defined with homogeneous
areas in population size’. Each grid cell was originally designed to have the same
population. Due to changes in morphology and migration between these areas, the
total population of each area may generally vary from the original constant by
relatively small amounts. The following constraints can be added to obtain districts
relatively equal in population.

s Yx s ff Vel (15)
iel
B B
& S Y % s fi VkeK 16)
jeJ

where x; is the number of population units assigned to j, and c* and f* are the
lower and upper limits, given in population units, of census areas to be assigned
to type A facilities. The z; are the number of type A facilities in population units
assigned to k, and c® and f® are the lower and upper limits of type A facilities to
be assigned to type B facilities. Observe that this is equivalent to setting capacity
constraints on the facilities, since the census tracks are quite homogeneous in
population. This would not be the case if there were substantial differences in the
population size of each area.

?Baltimore and Barcelona are examples
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The constraints on the number of facilities to be located can be replaced by a
budget constraint, and trade-offs between average distance to both types of facilities
and budget can be examined. Solution methods would differ from those discussed
next, which are specific to problems with limited numbers of facilities.

4 Solution Method

Formulations of the p-median and plant location problems generally require large
storage and computational time for reasonably sized problems, when solved using
the revised simplex method with branch and bound when necessary. The pq-
median model does not escape this problem. The linear programming formulation
of the pq-median presents a very large number of constraints and variables. The
Balinski type constraints (4) - (7), together with the large number of integer
variables involved in the model, makes traditional solution methods such as linear
programming with branch and bound when needed too expensive. As the size of
the network increases the number of variables and constraints increases
exponentially. For example, in a 25-node network, there are 1925 integer
variables and 16,952 constraints. If the network had 107 nodes, there would be
34,668 variables and more than 1.2 million constraints!

The number of variables in a p-median model can be reduced by the following
method. In the p-median problem, nodes assign to their closest facility. If there
are p facilities to locate, then a node can assign to all nodes except for the (p - 1)
furthest potential candidate nodes from it. The corresponding (p - 1) x; variables
will always equal O in the optimal solution and therefore can be discarded. That
is, for each node, p - 1 of the x; variables can be eliminated. Therefore, the total
number of assignment variables in the traditional p-median problem that can be
eliminated with certainty that the final solution will not be affected is equal to np -
n), where n is the number of nodes in the network (see Rosing et al. 1979).

In the case of the pg-median there are 3 types of assignment variables: x;, y,, and
z;. The first group of variables, x;, can be reduced, as in the p-median model,
from n*to n(n - p - q + 1) variables, since there are p + q facilities that offer type
A services. The second group, y,, can be reduced from n*to n(n - ¢ + 1). The
number of z, variables cannot be reduced with certainty that no alteration of the
solution will occur if all nodes are candidate for a type A or type B facility. In
this case there are n® of the z; variables. The total reduction in the number of

variables is np - 2nq - 2n.

The number of constraints can also be reduced in the same way. Each assignment
variable has a corresponding Balinski type constraint and a coherence constraint.
By eliminating some of these variables, some constraints are redundant and
therefore can be eliminated. For the pg-median, the full blown problem has 3n +
3n’ + n® + 2 constraints. The number of constraints can be reduced without
changing the formulation to 3n + n(n-p + 1) + n(n-q+ ) + i + (n-p -
q+ D(n-q+ Dn. For example, if n = 25, p = 5 and q = 2, the number of
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variables will go from 1,925 to 1,700 (-11.6%) and the number of constraints will
go from 17,577 to 13,177 (-25.0%). The larger the number of facilities to locate,
the larger the amount of the reduction.

The Balinski type constraints (4) to (7) could be replaced by Effroymson and Ray
(1966) constraints, but although the number of rows in the problem would be
reduced slightly, it is virtually certain that the continous solution of the linear
program will have fractional variables.

A solution of the pg-median problem must have all its variables equal to 1 or 0.
Since the coefficient matrix of the formulation is not unimodular®, it is likely that
some non-integer solutions will be found and that branch and bound will be
needed. Nevertheless, it may not be necessary to declare all variables integer when
re-solving the problem using branch and bound as a post-simplex resolution
method. Actually, in most cases, only the locational variables u; and v, need to be
declared integer. The assignment variables x;, y;, and z, can be allowed to be
continous, and most of the time the solution will be integer. Since this is a
minimization problem, the program will try to set to one (the upper bound of the
continous variables) the assignment variable that has the smallest coefficient in the
objective. Constraints (1) (2) and (3) will not affect the integer properties, since
by setting only one assignment variable equal to one they are met. Since the
locational variables are integer, the Balinski type constraints (4) to (7) will not
force the assignment variables to be a fraction. They will still be free to be 0 or
1. Coherence constraint (8) can cause some values to be non-integer, since
variables z, are not in the objective. Nevertheless, none of the problems solved in
our research did require a declaration of the assignment variables as integer.

S Computational Experience

The pg-median formulation has been solved in a 25-node network using relaxed
linear programming; branch and bound was used when necessary to resolve
fractional solutions. A commercial software package, MPSX/MIP* was used on
an IBM 3090-E600 mainframe computer to obtain optimal solutions. The full
specification of the 25-node problem involved 1,925 integer variables and more
than 17,500 constraints. The constraint set on coherence alone had 25° elements.
In order to reduce the problem size the number of assignment variables x;, y,, and

3For a discussion of unimodularity, see Garfinkel and Nemhauser (1972) p. p. 66-70, Taha (1975) p. 5.

‘MPSX: Mathematical Programming System EXtended/370. MIP: Mixed Integer Programming/370. This
software was developed by IBM.
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zZ;, was cut down by using the Rosing et al. approach described in section 4. The
weighting method was used to solve the multiobjective problem. In order to
identify the non-inferior set in objective space, several runs were made with a

different set of weights for each combination of type A and B facilities.

Since optimal solutions are known (by solving the problem using linear
programming and branch and bound when needed) the optimal trade-off curve is
also known. It is possible, however, that some of the non-inferior points were not
found, even though more than ten runs were done with different weights to try to
obtain all of them. The use of the weighting method for an integer programming
problem implies that one cannot be certain that all of the non-inferior solutions are
found (Cohon 1978). Indeed, the use of the weighting method for 0,1 problems
is unlikely to generate all non-inferior points because of the occurrence of gap
points.

Three non-inferior points (labeled A, B and C in Figure 2) were found when
locating three type A facilities and two type B facilities. There is a clear trade-off
between both OBJA and OBJB. For example, if one moves from point A to point
B in Figure 2, the average distance to type B facilities increases by only 3 percent,
while the average distance to type A facilities is reduced by almost 4 percent (more
or less 600 meters).

Two solutions are presented in Figure 3. These solutions correspond P and Q in
Figure 2, obtained when wA = 1 and wA = 0 were used. The discontinuous
arrows show that all nodes assigned to a type A facility are also assigned to thz
indicated type B facility. For example, in the top picture of Figure 3 all nodes
assigned to facilities at nodes 9, 10 and 17 for type A services are assigned
exclusively to node 17 for type B services. Therefore, coherence is satisfied.

Table 1 presents the results of the run times of the linear relaxation / branch and
bound solutions. The total number of runs in the second column correspond to the
number of different weights used. The third column gives the number of times that
the solution to the relaxation was integer. The fourth column presents the average
CPU time per run that MPSX took to find the continuous solution. The fifth
column gives the additional time that it took to find the integer solution after the
continous solution was found. Therefore, the total average run time is the sum of
the average continuous solution time plus the additional time spent to find the
integer solutions. These times are shown in the last column of Table 2. Since
each branching requires solution of two new problems, it ca be seen from the
average additional run time the very few iterations of Branch and Bound that were
actually needed.

It is interesting to note that as the number of type A facilities to locate increases,
the average run time for the continuous solution decreases considerably. On the
other hand, the additional average run time to obtain integer solutions does not
show this behavior.
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Table 1: Average CPU Time, pq-Median LP+ B&B, 25 nodes

Optimal Avge.
int. sol. Avge. additional
# of using run time run time Total
facilities Total linear linear using avg.
located number relax. solution B&B run time
(p-q) of runs only (CPU sec.) | (CPU sec.) | (CPU sec.)
2-1 11 3 147.6 106.7 254.3
32 10 1 165.1 165.1 227.7
4-2 12 3 101.4 101.4 180.6
5-2 13 2 92.3 92.3 134.7
6-2 11 3 68.5 68.5 148.7
6-3 12 3 139.0 139.0 166.1

Figure 2: Trade-off Curve, PQ-Median Problem
25-node network
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Figure 4: Average CPU Time, MPSX
PQ-Median Problem (25-node network)
IBM 3090-E600
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6 Conclusions and Further Research

The discipline of location-allocation theory is rich in formulations designed to
model hierarchical systems. Although location models and districting models are
studied by the same discipline and are closely related to the design of an optimal
spatial allocation of resources, they have, up till now, been studied separately and
without connection. The definition of coherence in the context of hierarchical
systems, which states that the entire area assigned to a facility at a given level has
to be assigned to one and the same facility at the next higher level, joins together
these two branches of location-allocation modelling. Coherence also plays an
extremely important role in defining administrative regions for better management
and in providing integrated planning units for policy studies.

A linear integer multiobjective formulation has been presented to address the issue
of location and districting of hierarchical facilities with coherence. The pg-median
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model locates facilities in a two-level hierarchical system by minimizing the
average distance to the closest facility at each level, subject to mandatory
coherence. In a two level hierarchy, a trade-off is seen to exist between the
average distance to each of the two levels. This trade-off suggests that a decision-
maker must focus on the relative importance of the two levels of service in arriving
at a final configuration of facilities.

The p-median models tend to embody large formulations due to their rigid
assignment structure which requires the use of assignment variables. Most
hierarchical models based on p-median formulations to date are expensive to solve
if traditional optimal methods such as linear programming and branch and bound
(LP+B&B) are used.The pg-median model does not avoid this problem, but the
methodology does provide globally optimal solutions. The combination of two p-
median models, one for each level, together with the constraint on coherence
makes the pg-median model very large even with a relatively small network, and
the size of the model increases very fast with the number of nodes in the network.
Thus, alternative solutions methods need to be found to obtain optimal or near
optimal solutions to the pg-median problem. The value of the research presented
here is two-fold. first, we have formally defined coherence and indicated its role
in district formation. Second, we have created a formulation with coherence
enforced, and we have implemented a solution method which provides optimal
answers and tradeoffs. The methodology suggested here can be used to provide
bench mark solutions for use in evaluating heuristic approaches to the pg-median
problem. Since heuristic algorithms will undoubtedly be needed for larger
problems, a standard against which they can be compared is needed. This work
provides that standard. We expect that further research in this area will be very
rich and fruitful.
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