Keywords: Bargaining, Shapley value, stationary equilibrium,
non-transferable utility games, coalitional form, non-cooperative

foundation.

Journal of Economic Lilerature classification: C71, C72, D50, D51.

Economics Working Paper 114
Bargaining and Value*

Sergiu Hart!
and

Andreu Mas-Colell}

February 1995*

. /L

S ™

Biblicteca »
2 (23
w» ~
., <

it BN >

= We thank the National Science Foundation and the U.S. - Israel Bina-
tional Science Foundation for financial support, the State University of New
York at Stony Brook for its hospitality during part of this research, and the
referees and editor of Econometrica for their comments.

t Department. of Economics; Department of Mathematics; and Center for
Rationality and Interactive Decision Theory, The Hebrew University of Jeru-
salem; Givat-Ram, 91904 Jerusalem, Israel.

! Department of Economics, Harvard University, Cambridge, MA 02138,
U.S.A.; and Department of Economics, Universitat Pompeu Fabra, 08008 Barcelona,

Spain.

** Previous versions: July 1994, February 1994, July 1992 (titled “A Model
of n-Person Bargaining”), June 1991 (handout).



Abstract

We present and analyze a model of non-cooperative bargaining among n
participants, applied to situations describable as games in coalitional form.
This leads ta a unified solution theory for snch games that has as special caseg
the Shapley value in the transferable utility (TU) case, the Nash bargaining so-
lution in the pure bargaining case, and the recently introduced Maschler-Owen
consistent value in the general non-transferable utility (NTU) case. Moreover,
we show that any variation (in a certain class) of our bargaining procedure
which generates the Shapley value in the TU setup must yield the consistent
value in the general NTU setup.



I. Introduction

In this paper we consider the problem of distributing the benefits or
costs of a cooperative endeavor among n participants. In doing so it is
important to permit this distribution to be influenced by the possibility of
partial cooperation, that is by the possibility that the final outcome of the
cooperative process involves only a subgroup of the players. To capture this
effect we describe the cooperative situation by means of a game in coalitional

form.

When utility is transferable across players (the TU case), cooperative
game theory has generated (axiomatically) a well established solution concept:
the Shapley [1953b] value. For n-person pure bargaining models (that is,
problems where the only possible final outcomes are either the complete
cooperation of all players or the complete breakdown of cooperation), with or
without transferable utility, a central solution concept suggested by
axiomatic cooperative game theory is the Nash [1950] bargaining solution (a

modern textbook reference is Myerson [1991]).

The centrality of the Nash bargaining solution for pure bargaining
situations has been much reinforced by its emergence as the (limit of’)
equilibria of natural non-cooperative bargaining procedures. The most
prominent of these is the Stahl - Rubinstein alternating offers model and its

variations (e.g., Osborne--Rubinstein [1990]). In the TU-case, bargaining



models leading to the Shapley value have also been suggested, e.g., Harsanyi

[1981], O. Hart--Moore [1990], Winter {1994] and, most especially, Gul {1989].

The following extension problem arises immediately: taking as reference
points the Nash bargaining solution for pure bargaining problems and the
Shapley value for TU problems, what is their proper generalization to the
class of all non-transferable utility (NTU) games in coalitional form? There
are some classical solutions, namely the Harsanyi [1963] and the Shapley
[1969] NTU-values (the latter is also known as the "A-transfer value"). The

theory, however, is much less settled for this general NTU case.

In this paper we pursue the above extension program by means of a non-
cooperative bargaining approach. We first propose a simple and natural
bargaining procedure (a variation of the alternating offers method) that
supports both the Nash bargaining solution for pure bargaining problems and
the Shapley value for TU problems. Our contention is that the bargaining
procedure fits and unifies these two problems rather well and that therefore
it constitutes a good launching pad for an investigation into the appropriate
solution for the general case, where partial breakdown is possible and where

utility is not fully transferable.?

Qur bargaining procedure follows tradition in setting up a sequential,

perfect information game, where at each stage a player becomes a proposer.

4 We note that our paper can also be viewed as pertinent to the research
program of implementation theory. In this context what should be emphasized
is the simplicity of the mechanism we propose.



The proposers are chosen at random and the meetings are multilateral (thus we
depart from the pairwise meeting technology of Rubinstein--Wolinsky [1985],
Gale [1986] or Gul [1989]). The requirement for agreement is unanimity. The
key modeling issue is the specification of what happens if there is no
agreement and, as a consequence, the game moves to the next stage. It is at
this point that subgroups are made to matter by allowing for the possibility
of partial breakdown of negotiations. Clearly, there are many ways to model
such a partial breakdown. In the body of this paper we concentrate on a
particular and simple class: disagreement puts only the proposer in jeopardy.
That is, after his proposal is rejected, the proposer may cease to be an
active participant. The non-cooperative solution concept we use is that of
stationary subgame perfect equilibrium. The formal model is set up and

discussed in Section II.

In Section IIl we observe that our equilibria do indeed yield, as the
probability of breakdown goes to zero (that is, as the cost of delay becomes
small), the Nash bargaining solution for the pure bargaining situations and
the Shapley value for transferable utility situations. The heart of this
paper are sections IV and V where we tackle the solution extension problem.
When analyzing the limits of our non-cooperative equilibria as the probability
of breakdown becomes small, we come to a surprise. These limits are none of
the most familiar solutions (the Harsanyi and the Shapley NTU values) but,
quite remarkably, they are precisely the consistent values introduced recently
by Maschler--Owen {1989, 1992], from completely different considerations.

This was unexpected to us and we would like to think that if two sets of



motivations lead to the same object then something must be right with it. In
our view this demonstrates that a non-cooperative approach to cooperative
solutions can have a positive feedback on the cooperative theory itself, by

helping to clarify the solution theory over the less established territory.

The consistent value is easy to define and analyze and we do so in
Section IV. Section V presents the general convergence result. In Section VI
we explore a broader range of bargaining procedures: in particular, we allow
for the‘possibility that players other than the proposer may be the victims of
bargaining breakdown, However, we show that if the bargaining procedure
yields the Shapley value in the TU-case, then necessarily the consistent value
obtains in the NTU-case. Thus the consistent NTU-value is, according to our
non-cooperative approach, the appropriate generalization of the Shapley TU-
value. In Section VII and last we address issues of interpretation and

suggest possible directions for further research.

II. The Model

Our basic data is an n-person coalitional form® (N,V). To be precise, N
is a finite set of n players and V(-) is a function that assigns a subset V(S)
of RS to every coalition S < N. An interpretation is that V(S) contains all

the payoff vectors to the members of S that would be feasible if S was the

5 To avoid using the term “"game" with different meanings we refer to (N,V) as

an n-person form rather than an n-person game.



group of deciding players. For a detailed discussion on this point we refer

the reader to Section VIL

Note that V(S) is a set, not a number. We are thus in the general case
of a non-transferable utility (NTU) coalitional form. We impose on (N,V) some

standard hypotheses:

(A.1) For each coalition S, the set V(S) is closed, convex and
comprehensive (i.e., V(S) - Rf c V(S) ). Moreover, O € V(S) and

V(S) n Rf is boundedé.

(A.2) For each coalition S, the boundary of V(S), denoted 38V(S), is
smooth (i.e., at each boundary point there is a single outward
normal direction) and non-level (i.e., the outward normal vector

at any point of 8V(S) is positive in all coordinates)”.

(A.3) Monotonicity: V(S) x (OT\S} ¢ V(T) whenever S ¢ T (i.e., if one
completes a vector in V(S) with® 0’s for the coordinates in T\S,

then one obtains a vector in V(T) ).

6 The requirement O € V(S) for all S is just a convenient normalization that

we make without loss of generality. The whole theory is invariant under
translations of the utilities’ origins.
7 Actually, the smoothness and non-levelness conditions are needed only for

vectors in 8V(S) n Rf.

8 Recall the normalization in (A.l).



For each i € N, let r' := Max { c : ¢ € V(i) } = 0 (by (A.1)). Denote
rg = (r‘l)ies € RS. The form (N,V) has already been normalized (in (A.1)) and,

i C T
therefore, we cannot put r = 0. The significance of the distinction between

r' and 0 will become clear later on in this Section and in Section VII. Of
course, r' = 0 for all i is possible; but note that in general (A.3) does not
even imply rq € V(S). (A trivial counterexample is the TU game given by

v(S) = 1 for all non-empty S.)

Two particularly simple classes of coalitional forms (N,V) are the
transferable utility (TU) coalitional forms, i.e. those for which there is a
real-valued function v(-) such that V(S) = { ¢ e R>: ):ieS ol = v(S) } for all®
S ¢ N; and the pure bargaining coalitional forms, which we formally define as
those where!© ry € 8V(S) for all S # N, and ry € V(N).

We now describe the sequential non-cooperative game to be analyzed. Let

(N,V) be an NTU-game and O = p < | be a fixed parameter. Then the n-person

non-cooperative game (associated to (N,V) and p) is defined as follows:

In each round there is a set S ¢ N of "active" players,
and a "proposer" i € S. In the first round S = N. The
proposer is chosen at random out of S, with all players in

S being equally likely to be selected. The proposer makes

9 In the TU-case we will use (N,V) and (N,v) interchangeably. As usual, we
put for convenience v(e) = O.

10 The bargaining problem will be denoted (rN,V(N)); N is the "disagreement
point” and V{N) is the set of "feasible agreements".



a ‘"proposal" which is feasible, i.e. a payoff vector in
V(S). If all the members of S accept it -- they are asked
in some prespecified order -- then the game ends with

these payoffs. If it is rejected by even one member of §,

the set of active players is again S and, with probability
1 - p, the proposer i "drops out" and the set of active
players becomes!! S\i. In the latter case the dropped out

proposer i gets a final payoff of O.

While the game can potentially last infinitely many periods, it is plain that,
whatever the strategies, with probability one the game will terminate in

finite time and the expected payoffs at termination are well-defined.

It is clear that if we are dealing with a pure bargaining coalitional
form and N S O then the above non-cooperative game is the (unessential)
variation of the Rubinstein bargaining model where the proposer is chosen at
random at every step. It is well known that for Rubinstein style models with
more than two players folk-like theorems for perfect equilibrium apply (see
the example of Shaked in Chapter 3 of Osborne--Rubinstein [1990]). Therefore

there is no hope for sharp predictions in our (more general) setting if the

solution concept is merely (subgame) perfectness.’2 Thus we shall take the

1 We write S\i for the more cumbersome S\{i}.

12 gee Jun [1989], Chae--Yang (1988} and Krishna--Serrano [1990] for some
modified procedures yielding unique perfect equilibrium payoffs for a broad
class of pure bargaining problems. In our model, the set of perfect
equilibrium payoffs is investigated in the TU-case by Krishna--Serrano [1993].




familiar route of concentrating on stationary (subgame) perfect (SP)
equilibria, that is, on those subgame perfect equilibria where strategies are
such that the choice at each stage only depends on the set of active players S
and on the current proposer i, but neither on history nor even on calendar
time.13:1%15  We remark that a stationary perfect equilibrium is first and
foremost a perfect equilibrium and, in terms of its strategic basis, is
therefore as "valid" as any other perfect equilibrium. However, it is the
simplest type of perfect equilibrium and so it is the natural starting and

reference point of the analysis.

We will now proceed to characterize the SP equilibria. To facilitate
exposition we will assume that both proposers and respondents break ties in
favor of quick termination of the gamel®, Given a profile of stationary

strategies, let a € RS, for i € S ¢ N, denote the proposal when the set of

S,i
. . . . 17 =

active players is S and the proposer is i. Let also ag (17]s]) ZiES ag ;

be their average. (Note: if some of the ag,; are random, i.e., if mixed

strategies are used, we let ag be the expected average. We will see
immediately after Proposition 1 that, with tie-breaking as above, mixed

strategies are not used in SP equilibria). The following Proposition spells

out the basic equations of an SP equilibrium.

13 As the respondents reply in sequence we note that their responses may

depend on what previous respondents did in the same stage.

14 We emphasize that we deal with a true equilibrium, i.e. deviations may be
non-stationary.

15 In our case, S and i are also the payoff relevant variables and so the SP
equilibria are the Markov perfect equilibria of Maskin--Tirole [1988].

16 No tie-breaking assumptions are needed in our model; we use them only to
get simpler statements. We thank Motty Perry for pointing this out.

7 The number of elements of a finite set A is denoted |A]|.




Proposition 1: The proposals corresponding to an SP equilibrium are

always accepted, and they are characterized by:

ag ; e 8V(S) for all i € S ¢ N; and (1)
aj =paj+(1—p) a“i for all i, j e S c N withi# j; (2)
S,i S S\i ! ’
where ag = (17)s]) ZieS ag ;i - Moreover, these proposals are non-negative
. S .
(i.e., aS,i € R+ for all S and i).

In words, (2) says that j will be proposed by i the expected amount that

j would get in the continuation of the game if the proposal is rejected.

Proof: We proceed by induction. The Proposition trivially holds for the
l-player case. Suppose it holds when there are less than n players. Let

ag ;> for i € S ¢ N, be the proposals of a given SP equilibrium. We will

show that (1) and (2) are satisfied. Denote by cg € RS the expected payoff

vector for the members of S in the subgames where S is the set of active

players. Because V(S) is convex we must have cg € V(S). The induction

hypothesis implies that ag = Cg and that (1), (2) are satisfied for S # N.

Monotonicity and convexity (see (A.3) and (A.1)) imply

p c., + (1-p) (a

N , 0) € VIN}) for any i Increasing the i-th coordinate

N\i

until reaching the boundary &8V(N) (recall (A.1)) determines the vector di on

10



the boundary 8V(N) of V{(N} with dg = p cl*\l] + (1-p) alil\i for j # i. Thus,

d; zp clil' For j # i, the amount d“i] is precisely the expected payoff of j

~ following a rejection of i’s proposal. Therefore di is the proposal which is

best for i among the proposals that will be accepted if i is the proposer (it

gives to all other j's the minimum they would accept). In addition, any
proposal of i which is rejected yields to i at most p Clij + (1-p) O = d;.
Hence, player i will propose ayi = di and the proposal will be accepted.
From this it follows that N = @N

It remains to show that arij z 0. To see this note that the following

strategy will guarantee to i a payoff of at least O: accept only if offered at

least O and, when proposing, propose O € V(N). This implies that ayi = 0.

Conversely, we show that proposals ( ) satisfying (1) and (2)

s,i’seN, ies

can be supported as SP equilibria. Note first that they are all non-negative.

Indeed, the ay ; are in V(N), and therefore, by convexity, so is their average

ay Moreover (aN\i’O] € V(N) (by monotonicity and a,.. € V(N\i)), implying

N\i
that bi = p a, + (1-p) (aN\i,O) € V(N). Now a,, ., which lies on the boundary

N N,i
of V(N), coincides with bi on all coordinates except the i-th. Therefore,
ay i = bi' Moreover, bi = p ay (since, by the induction hypothesis,
NN = 0). Averaging over i yields ay =z p ay and we conclude that ay Is non-

negative (and therefore so are all the ay i).

From here it is straightforward to verify that the strategies

corresponding to these proposals do form an SP equilibrium. By the induction

1



hypothesis, this is so in any subgame after a player has dropped out. Fix a
player i in N. The strategies of the other players do not allow player i to
increase his payoff from proposals that are accepted -- at any stage, and
whether proposed by i himself or by other players. Therefore the only
conceivable gain can come by managing to drop out. But this gives a payoff of

0, whereas the suggested strategy yields non-negative payoffs. I

i

Note that (1) implies that a(i)i = r. Hence a(i)i is non random,
which iterating in (2} (recall that ag has been defined to be the expected
payoff vector, thus non-random), yields that a. . is non-random. Therefore,

S,i

under the given tie-breaking rule, there are no mixed strategy SP equilibria.

e18 .
In general, aN,i * aN,j if18 i # j. Therefore, from aN,i € JV(N) for all

i it does not follow that their average a, belongs to 8V(N) (it will not be if

N

V(N) is strictly convex). Hence the payoffs need not be efficient. However,

we note the following important fact, which is readily implied by (2):

Corollary: Let (M, ..., M) € RI:J be an upper bound for the set V(N) n Rrj.

J J| < _ .
Then 'aN,i - aN| = M (1-p} for all i, j in N.

18 Note that being the proposer is not necessarily an advantage, i.e.,

! > a! need not hold. Consider the buyer i 1 in the "2-buyers, l-seller”

a —

N, 1 N

game: v(1) = v(2) = v(3) = v(12) = 0, v(13) = v(23) = v(123) = 1. Here
1 1

aN'1 = p/6 and ay = 1/6.

12



Thus, if p is close to 1 -- i.e., if the "cost of delay" is low -- then
there 1is little dispersion among individual proposals: all the an constitute

small deviations of a,. This implies, first, that a

N is almost Pareto optimal

N

(since the aNi are Pareto optimal). And second, that there is no substantial
advantage or disadvantage to being the proposer; the "first-mover" effect

vanishes.

We conclude this section with a few remarks. First, observe that ours is
a simple model where the breakdown of negotiations is not an "all or nothing"
matter. When a player leaves the game, the rest continue bargaining (albeit
over a diminished "pie"). Thus in our model the breakdown of negotiations is
only partial, and the attainable sets of the intermediate coalitions have
significant influence over the final outcome, a feature that is absent in the

extreme pure bargaining case.

Second, we do not consider time discount. The cost of delay in agreement
is present in the form of the breakdown probability p. Time discount would
not add anything essential to the analysis. If so desired, however, it could

be incorporated with only minor modifications of the conclusions.

Finally, from the nature of the non-cooperative game and the solution
concept (see Proposition 1) it makes sense that payoffs should be considered
for all coalitions simultaneously. So a payoff configuration (p.c. for short)

) RS . that is, a list of payoff

is defined to be an element a = (

aglsen Of Tisen

vectors, one for each subcoalition S < N.

13



III. The analysis of two classical cases

In this section we consider the simplest examples of coalitional forms:
the Transferable Utility and the Pure Bargaining cases. The results of this
section are special cases of the general theorem of Section V. We begin with
the TU case; the result follows from Proposition 7 and from the Corollary to

Proposition | in the previous section.

Theorem 2: Let (N,V) be a TU form with corresponding coalitional
function v. Then for each 0 = p < 1 there is a unique SP equilibrium.

Moreover, for every S: (i) the SP equilibrium payoff vector a_ equals

S
Sh(S,v), the Shapley value of the coalitional form!® (S,v); and (ii) the SP

equilibrium proposals a converge as p > | to the Shapley value Sh(S,v) for

S,i

all i in S.

We have thus obtained the Shapley value in a non-cooperative manner. For
p close to 1, the "equilibrium path" consists of the first proposer proposing
a payoff vector that is close to the Shapley value of the game, and everyone

accepting it (which ends the game).

19 (S,v) denotes the restriction of (N,v) to S; i.e., the player set is S and

. . . . L. S
the coalitional function is the restriction of v to 27.

14



Suppose that the coalitional form is generated from a standard (quasi-
linear) convex economy, e.g., participants own inputs which enter into a
constant-returns concave production function for utility. Then the value-
equivalence theorems (starting with Shapley [1964]; see Cheng [1996] for a
survey) tell us that if the number of participants is large, then the Shapley
value allocations, hence the SP equilibrium payoffs of our non-cooperative
game, are nearly Walrasian. At least for the case where p is close to 1 we
could say that our economy functions as if a "referee", chosen at random,
announces a price system that is accepted by all participants and clears

markets.

One way to gain intuition on the result of Theorem 2 is to consider the
well-known axioms of the Shapley value (e.g., Myerson [1991] or Owen [1982]).
In the TU case the payoff configurations that solve the system of equations
(1)-(2) are clearly linear in v, symmetric relative to the labels of the
players, and Pareto efficient. Hence the key issue is the fulfillment of the
null player (or dummy) axiom, which asserts that if v{(S) = wv(S\i) for all
coalitions S containing player i (thus also ri = v(i) = 0), then i should get
0. To see the plausibility of our equilibrium payoffs satisfying this axiom,
take for clarity the extreme case where?® p = 0. Then rejected proposers are
eliminated for sure from the game (which will therefore terminate in at most n
steps). The null player axiom obviously holds for one-player coalitional
forms. Suppose it holds for coalitional forms with less than n players. Let

now i be a null player in the n-person game. If the proposer is j # i, then i

20 This case was considered in Mas-Colell [1988].

15



will be offered (recall that p = 0) his payoff in the N\j continuation, which
is 0 by the induction hypothesis. If i is the proposer then any proposal that
gives to the remaining players in total less than v(N\i), which is what they
will get in the next stage, will be rejected by at least one of them. ’ Hence i

can get at most O, and we conclude that the null player axiom holds. (See

Section VI for further discussion on this issue.)

A non-cooperative implementation of the Shapley value in TU game forms
has been offered earlier by Gul [1989]. Our procedure differs from his,
first, in the meeting technology: Gul’s unfolds through pairwise meetings.
Second, in the nature of the results: Gul considers only those SP equilibria
that entail immediate acceptance (other SP equilibria may yield outcomes
different from the Shapley value). In our case, immediate agreement is
guaranteed at all SP equilibria, and our result applies to all of them. Also,
to guarantee existence, the monotonicity assumption (A.3) suffices in our
model, as compared to the super-additivity assumption on the values of the

subgames in Gul's case.

We come now to the pure bargaining case; the result is a particular case

of Theorem S in Section V.

Theorem 3: Let (N,V) correspond to an n-person pure bargaining problem
(rN . V(N)). Then for each O = p < 1 there is at least one SP equilibrium.

Moreover, any SP equilibrium payoff vectors aN(p) converge to the Nash

Bargaining solution of (rN , VIN)) as p — L

16




We emphasize that the convergence to the Nash bargaining solution is no
surprise, given that for the pure bargaining case the non-cooperative model
amounts to a variation of the Rubinstein alternating offers model (see Binmore

[1987], for the convergence of the latter).?!

IV. The consistent value

This section is devoted to a preliminary study of the consistent NTU-
value introduced recently, under the name of consistent Shapley value, by
Maschier--Owen [1989, 1992]. We note that the assumption of the smoothness of

the boundaries 3dV(S) is not needed in this section.

The consistent value can be defined as follows. Let w be an order of the

n players in N. For a TU-form (N,v), the marginal contributions of the
players in the order m -- say the order is m = (1, 2, ..., n) —- are:

1

d(m) := v(l);

- : 11t M : " A
21  There is also a close connection to the "Nashlike solutions" N~ of Thomson-

-Lensberg [1989, Section 8], which converge to the Nash solution as A — L.
Indeed, it can be checked that, when O < p < 1, the set of SP equilibrium

payoffs is precisely (1/p) NA, where A := p / [n - (n-1)p]. Note that, if n =
3 and the set V(N) is not generated by a one-dimensional "pie", then one may
have multiple SP equilibrium payoffs, and that without the smoothness
assumption on 8V(N), the convergence to the Nash solution may fail (again, see
Thomson--Lensberg [1989]). Both these phenomena arise in the standard
Rubinstein alternating offers model as well.

17




a2 = v(12) - v(1) = v(12) - d'(n);

a3 := v(123) - v(12) = v(123) - d'(m) - d%(m);
and so on. The extension to NTU forms is straightforward:

dl(n) := Max { c1 : c1 e V(1) } =17
dz(n) := Max { c2 :(d(m), ¢7) e V(i2) };

d7(m) = Max { c3 c (d(m), d7(m), ¢7) e V(i23) };

and so on. Thus di(n) is the most that i can get (in V{{L,2,...,i}) ) after
all the previous players j got their own dj(n)’s. Consider now the vector of
expected marginal contributions, where each one of the n! orders is equally
likely: player i's payoff is (1/n!) er di(n). (In the TU case, this is the
Shapley value.) By definition, the payoff vectors d(m) are efficient for
every order . However, their average will in general be inefficient --

unless the boundary of V(N) happens to be flat.

The above suggests to consider first the case of a hyperplane coalitional
form (H-form for short). These forms (which will play a very important
technical role in our analysis??) are defined by the property that each V(S) is
a half space in RS (and thus 8V(S) is a hyperplane). For an H-form the payoff

vector ¥(N,V) := (l/n!)znd(n) is efficient. Moreover, ¥(N,V) is precisely

the consistent value for hyperplane forms introduced by Maschler--Owen [1989].

22 A model that generates the hyperplane coalitional forms is that of the

"prize games"; see Hart [1994].

18




Note that for TU games it coincides with the Shapley value. Observe also that
efficiency obtains for every subcoalition: ¥(S,V) € 8V(S) for all S. We refer
to (\P(S,V))ScN as the consistent value payoff configuration®? of the hyperplane

form (N,V). It is obviously unique.

For a general NTU form (N,V), choose for each coalition S a supporting

normal vector A_ € Rf+ to 8V(S). Let (N,V’) be the resulting hyperplane game

S
(e  VI(S) ={ceR:n - cs= VSAg) ) > VIS) for all S, where
v(S;AS) := Max ( AS cc:ce V(S)} ) Let a:= (¥S,V ))SCN be the (unique)
consistent value payoff configuration of V’. If a is actually feasible in the

original form V, i.e., if ag € V(S) for all S, then a is called a consistent
value payoff configuration of the game form (N,V); see Maschler--Owen [1992].
We observe that in the pure bargaining case this gives precisely the Nash

bargaining solution (it follows for instance from Proposition 4 below).

Note that the normal vectors )\S will typically be different for distinct

coalitions S. Taking them all equal (more precisely, we would let )\S be the

restriction of AN to S) would not work in general, since we require that
¥(S,V’) € V(S) for all S, not only for N. The consistent value treats all

coalitions in the same way, thus exhibiting a property that we may call

“subcoalition perfectness"2*. In contrast, the Shapley NTU-value requires the

23 S

Recall that a payoff configuration is an element of nScN R
2% Observe that there is an intimate relation between the concept of a
"subcoalition perfect" solution and the concept of a "subgame perfect”
equilibrium. The fact that, in the bargaining procedure, one requires the
same equilibrium conditions in each subgame, thus for every remaining

coalition S, implies that the solution concept must be the same for all

19



feasibility condition only for the grand coalition N and takes all the AS

equal to AN. Also, for the Harsanyi NTU-value, the solutions for all

subcoalitions are based on the weights AN determined from the grand coalition.

Under our hypotheses consistent values exist, by a standard fixed-point
argument; see Maschler--Owen [1992]. Existence is also a corollary of Theorem
5 of the next section (since the SP equilibrium payoff configurations lie in
the compact set HSCN V(S) n RE by Proposition 1). For non-hyperplane forms

consistent values need not be unique: see Owen [1994] and the next paragraph.

Suppose we had a "feverse pure bargaining problem", i.e., rg € 3V(S) for

S#N and?® TN ¢ VI(N). Then the consistent value payoff vectors c¢ are

characterized (apply Proposition 4 below) by the first order conditions (and
no more than that) of the optimization problem:

i

Max T. (r
ie

N - Y, subject to ¢ € 8V(N) and ¢ < r

N’

subcoalitions.
25 gay n=2. The monotonicity assumption (A.3) implies that both (rl,O) and

(O,rz) belong to V(12), but (rl,rz) could well be outside. In terms of the
bargaining model, this corresponds to the case where the breakdown outcome
depends on which player made the last (rejected) proposal before breakdown.

Here, (rl,O) and (O,rz) are the payoff vectors if breakdown occurred after
player 2 or player 1, respectively, was the last proposer. See Section VII
for a more concrete discussion on this dependence.

20




Figure 1(a)



Figure 1(b)
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For example, take n=2. Then (see Figure Il(a)), ¢ = (cl,cz) € 8V(12) must be
the midpoint of PQ, the segment of the tangent to 8V(12) at c that lies below
r = (rl,rz). Observe that, for this type of problem, non-uniqueness can

easily occur: see Figure 1(b) for an example where both ¢ and ¢’ are

consistent value payoff vectors.
A characterization of the consistent values is as follows:

Proposition 4: Let (N,V) be an NTU form, and a = (aS)ScN a payoff
configuration. Then a is a consistent value payoff configuration of (N,V) if

and only if for each S ¢ N there exists a vector AS € Ri_ such that:

(a) ag € 8V(S);

(b) AS " ag = V(S;AS) := Max { AS > c:ce€ V(S)}); and
i i i _ J J o .
(c) Z ?\S (a,s aS\_j) = Z AS (aS aS\i) for all i € S.
jes\i jeS\i

Conditions (a) and (b) say that the payoff vector a_ is efficient for the

S

coalition S, and that AS is an outward normal to the boundary of V(S) at ag
(or, stated in familiar economic terms, AS represents the local marginal rates
of efficient utility transfers between the players at aS). As for condition
(c), it may be viewed as a "preservation of average differences" requirement.
The term “preservations of differences" has been used in Hart--Mas-Colell
[1989]; it was introduced (under the name "balanced contributions”) by Myerson

[1980]. In the TU-case, the j-th terms on both sides are equal for the

Shapley value. We could say that the contribution of j to i, measured by
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a; - aé\j , equals the contribution of i to j, measured symmetrically by
aé - a;\i It is known that in the TU case this preservation of differences

principle does actually characterize the Shapley value payoff configuration
and is also equivalent to an appropriate notion of consistency (see Hart--Mas-
Colell [1989]). In the NTU case we cannot expect the j-th terms on both
sides?® to be equal in general?’. It turns out however that they are equal in
average: the average contribution to i from the other players equals the
average contribution of i to the other players. (One may of course replace

“average" by "total").2®

Proof of Proposition 4: The proof is by induction. Assume the result

holds for all S ¢ N, S # N. We have to show that condition {(c) for S = N is

= ¥(N,V’), where V'(S) := { c_ € RS t AL * C. = v(S;AS) } for

equivalent to a S S S

N
all S (the associated H-form). By definition, \IJI(N,V’) is player i-th

expected "marginaln contribution over all n! orders of the players. We classify
these orders into n groups according to the last player j in the order. If

j # 1 then the (conditional) expectation of i-th marginal contribution is the

same as in (N\j,V’), which equals a.

N\ by the induction hypothesis. When i

26 Rescaled according to the rates ?\S in order to bring them to the common

"local unit of account”.
27 The reason is that the normal vectors Ao are usually distinct for different

coalitions. Dropping condition (b) and taking them all equal leads to the
egalitarian solutions (which constitute the first step in the construction of
the Harsanyi NTU value); see Hart--Mas-Colell [1989]. (Indeed, in this case
one may easily prove inductively that condition (c) implies the preservation
of differences condition.)

28 For hyperplane forms, condition (c) is equivalent to the "weak 2-
consistency” of Maschler--Owen [1989]. For non-hyperplane forms it is however
different.
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J

comes last, the expected marginal contribution of every j # i is NN by the
. . . _ j o i o
same argument; the remainder (v(N,AN) Z (AN 2 N\ )/7\N is i-th contribution
{recall the definition of V’(N) ). Therefore
i P _ J i
¥(N,V') = (i/n) () N\+[va) ZAN adn 172y ) (3)
J#i j#i

. o i
Taking into account that v(N,?\N) Z_jeN AN ay we have

i o= i i i i J i
n AN ¥(N,V") Z AN aN\j + AN ay ¥ X AN (aN aN\i)’
J#i j#i
hence
i i

i, i _ _ Joad oL
n Ay (Z'NV) a) ZA N aN)+ZA (ad - ad ).

This completes the proof, since the equality of the right-hand side to O is

precisely condition (c). []

Remark: Formula (3) (also (5.1} in Maschler-Owen [1989]) is useful for
computing consistent values recursi;/ely (see for instance the two examples

below): Assume that 8V(N) is a hyperplane and that a is given for all i.

N\i

Complete a_ .. into an efficient N-vector??® b, = (a «') € 8V(N). Then the

N\1i i I\'AVE

average (1/n) Zi bi of the bi’s is a consistent value for (N,V). Note that in

the case of TU-games, this yields the formula

29 o s uniquely defined since the boundary is non-level.
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Sh(N,v) = (1/n) ):ieN ( Sh(N\i,v), v(N)-v(N\i) ).

In order to develop some intuition it may be useful to compute the

consistent value for some classical NTU examples.

Example (Owen [1972]): Let n = 3; V(i) = { ¢ : ¢ = 0 } for all i

1 2 1 2
V(3) = V(23) ={ c:¢c =0}, ViI2) = {¢c:¢c +4c =1, ¢ =1, ¢ =1/4 )
and V(123)=(c:cl+c2+c351,clsl,cl+c‘]sl,alli,j). Then
the consistent value with AN = (1, 1, 1) vyields a, = (172, 1/8) and

ay = (172, 3/8, 1/8). Thus player 3 (the "banker") gets a positive amount
(player 3 is not a null player since he indeed eases the utility transfer
possibilities between 1 and 2; this is in contrast to the Shapley NTU value,
which is (172, 172, 0), for which 3 effectively becomes a null player).
Moreover, 1 gets more than 2 due to the asymmetry of V(12) which favors player
1 (in contrast, the egalitarian-based Harsanyi NTU value, which is
(2/5, 2/5, 1/5), does not recognize this). Thus the consistent value captures
better the influence of the subcoalition {1,2} (this is due to the

"subcoalition perfectness" property we have already mentioned; namely, that

{1,2} is treated no differently than the grand coalition).

Example (Roth [1980]): Let n = 3; V(i) ={c:c =0 } for all i,
V(2) = {c:c = (1/2, 172) },
V(13) = { ¢ : ¢ = (g, l-€) },

vi23) = {c : ¢c = (g, 1-g) } , and
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V(123) = { ¢ : c = conv { (172, 1/2, 0), (g, O, l-€), (O, €, 1l-€) }
("conv" denotes "convex hull"). Then there is a unique consistent value for
AN = (1, 1, 1), namely ay = (16 + €/3, 1/6 + £/3, (2/3) (l-g) ). It may
appear, as argued by Roth, that since there is no conflict between 1 and 2 the
outcome should be (1/2, 1/2, 0). But this is only if the participation of
player 3 is not needed for a final agreement. If some form of unanimous
consent is required then the consistent value makes a lot of sense. Players 1
and 2 cannot get 1/2 each unless 3 either agrees to it or drops out of the
game. This natural interpretation of V(-} is intimately related to our non-
cooperative game and thus to the consistent value (see the next two Sections).
Indeed, in terms of the bargaining model, the danger to players 1 and 2 is
that one of them may drop out before 3, in which case their payoffs are either

O or €. This is the source of the power of player 3 to extract a considerable

amount of utility.

V. The General Result

In this section we study the equilibria of the non-cooperative game in

the general NTU case.

Theorem S: Suppose that (N,V) is an NTU coalitional form satisfying the
assumptions (A.1), (A.2) and (A.3). Then for each O = p < 1 there is an SP
equilibrium. Moreover, as p — 1 every limit point of SP equilibrium payoff

configurations is a consistent value payoff configuration of (N,V).
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Theorem 5 will be proved in three steps: Proposition 6 deals with the
existence of SP equilibria. Proposition 7 proves the result for the case of
hyperplane coalitional forms. Finally, Proposition 8 provides the general

convergence argument.

Proposition 6: Let (N,V) be an NTU form. Then for each O = p <1 there

is an SP equilibrium.

Proof: A straightforward fixed-point argument will take care of this.
We can proceed recursively. Clearly, the result is true for n = 1. Suppose

now that we have ag for all S # N with the property that for any T < N, T # N,

(aS)SCT is an SP equilibrium payoff configuration for (T,V). By Proposition

1, a. = 0 for all S. We now specify n functions oci(b) from the compact convex
set V(N) n Rrj into itself by letting oci(b) be defined by: ai(b) € 4V(N} and

ag(b) = p o+ (1 - p) aIﬂI\i for all j = i. Because of the non-levelness part

of (A.2) the functions oci(-) are well-defined and continuous. By the

convexity of the domain, (1/n) ZieN «.(b) maps also into V(N) n RN . Hence,

1 +
by Brouwer’s fixed point theorem, there is a vector an e V(N) n RT satisfying

a,, = (I/n) ):i oci(a }. By Proposition 1, a

N N are equilibrium payoffs for N (and

N

aN,i = ai(aN) for all i). By the recursion hypothesis (aS)SCN are the payoffs

of an overall SP equilibrium for (N,V). []

Remark: The Proof of Proposition 6 does not make use of the smoothness

hypothesis.
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Proposition 7: Let (N,V) be a hyperplane form. Then for each 0 = p < |
there is a unique SP equilibrium. Moreover the SP equilibrium payoff
configuration equals the unique consistent value payoff configuration of

(N,V).

Proof: We proceed by induction and assume that the statement is correct

N

for hyperplane forms with less than n participants. Let A € R++ and
VIN) = {ce RN : ):i A= w ) For every i,
i i i i i _
na ay = A aN,i + Z A aN,j =
j#i
- (w - J o Pl o
= [w Z A aN,i] + Z A aN,j
j=i j#i
- AW J ) ad i i _ i
= [w ZA (p ay * (1-p) aN\i) ] + Z A (p ay + (1-p) aN\j)'
jei j#i
Now w = ¥ A‘j a‘j ; also b(i) := [w - ¥ Aj aj | Ai is the expected
J N’ ' ji N\i

marginal contribution of i in a random order, conditional on i being last.
Indeed (as in the proof of Proposition 4), classify the orders according to
the last player. The (conditional) expected marginal contribution of each

j # 1 when i comes last is the same as the expected marginal contribution of j

in (N\i,V), which by the induction hypothesis is precisely agl\i The
remainder b(i) is then i-th contribution when he is last. Hence, the last

equality becomes, after dividing by Al,
i
N\j

na =p ag, + (1-p) b(i) + Z(p a]:] + (1-p) a

N ) =

J#i

=nop arij + (1-p} bli) + (1-p) z al:l\j .

J¥i
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i

i .
Therefore n a,, = bli) + Z_j:ti AN

. . i
N , which yields the result: ay s the

expected marginal contribution of i (this contribution is b(i) when i comes

. i
last, and is a

NG T again by the induction hypothesis -- when j # i comes

last).

Finally, to show the existence of the SP equilibrium we choose

ag = ¥(S,V) for all S and then define ag ; by equations (1) and (2). It is
easy to check (use the computation above) that, indeed,
ag = (1/]s|) ZieS ag; - Hence these proposals form an SP equilibrium by

Proposition 1. [}

Proposition 8: Let (N,V) be an NTU form. If al{p) is an SP equilibrium
payoff configuration for each p and a is a limit point of alp) as p — 1 then

a is a consistent value payoff configuration of (N,V).

Proof: Let a = (a_) and define A. to be the outward unit length

35’seN S

normal to 8V(S) at ag - We begin by associating with every p a hyperplane

form (N,Vp). To this effect let AS(p) be the outward unit normal to the

hyperplane passing through the vectors { ag

i e S} and let Vp(S) be the
resulting half-space; if the hyperplane is not unique, choose As(p) closest

possible to A_ . Since a i(p) — a_. (by the Corollary to Proposition 1) we

S S, S
have AS(p) — AS . the smoothness of 8V(S) is essential here. Therefore
V(S) - V(S) :={ce RS T AL * C <AL v a. ) Because of the
p S S S

characterization in Proposition 1, the p.c. alp) remains an SP equilibrium

p.c. for (N,Vp), thus alp) is the consistent value p.c. of (N,Vp) by
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Proposition 7. The continuity of the marginal contributions with respect to
the hyperplanes implies that the p.c. a is the consistent value p.c. of

(N,V’), thus also of (N,V). [

Remark: The contrast between Proposition 7 and Theorem 5 (actually,
Proposition 8) illustrates the role of assuming that p is close to 1. it
localizes the arguments, in the sense that it guarantees that, for every S,

all the proposals a of an SP equilibrium are clustered together (Corollary

S,i
to Proposition 1) so closely that, up to a second order effect, it is as if we

could replace every V(S) by a linear approximation.

VI. Generalizing the Bargaining Procedure

In this section we present and study some extensions of the bargaining
procedure of Section II. The aim is not complete generality, but rather to
have a set-up that allows us to perform some comparative analysis. To this
effect we keep the main structure of rounds, proposers and the possible
dropping out of a player after the proposal is rejected. However, it is no
longer necessarily the proposer that drops out, and the probabilistic

structure contemplated is more general.
As before, the non-cooperative games we consider consist of (potentially)

infinitely many rounds of bargaining. In each round there is a set S ¢ N of

active players -- starting with S = N in the first round -- out of which a
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proposer i € S is chosen; this is done now according to a given probability

distribution3? ¢ = (O‘i). The proposer makes a proposal, which is a payoff

ieS
vector feasible for S (i.e., it belongs to V(S)). The members of S are then
asked (in some prespecified order) whether or not they accept the proposal.
If they all accept it, then the game ends with these payoffs. Otherwise, if
the proposal is rejected by even one member of S, then the game moves to the
next round. With probability P, the set of active players does not change
(call this case ‘"repeat"), while with probability l-pi one of the active
players drops out and gets a final payoff of O (call this case "breakdown").
More precisely, the set of active players in the next round is S with
probability Py and it is S\k with probability Tk]i for each k € S (thus

Py + ZkeS Tk]i =1, for all i € S). Note that all the probabilities above may

depend on S (when necessary we will write 0i(S), pi(S), and so on).

Thus the player that drops out is no longer necessarily the proposer.
Moreover, the various probabilities may depend on the set of active players
and the proposer. The procedure we have used throughout this paper

corresponds to o, = 1/s; p. = p; T.,.=1-p and T =0 for ki (as

i i|i kj|i

usual, s := |S]).

The analytical tools of the previous sections may be used to study this

more general procedure. We start with the TU-case. The result will be stated

P le, L g0 =1 and o, = 0 for all i € S.
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in terms of recursive equations: the solutions for the subcoalitions of S

determine the solution for S. Let us introduce some notations:

p(S) := ):ieS O‘i(S) pi(S) ;

(S) := cri(S) T S) /7 (1-p(S)); and

¥ik ki
B(S) = Lieg 7 (S) -

Thus, p(S) is the total probability of "repeat" (i.e., no player drops out

following a rejected proposal); (S) is the conditional probability, given

ik
“preakdown" (i.e., some player drops out following a rejection), that the

proposer was i and the dropped out player was k; and Bk(S) is the total

probability that k dropped out, given "breakdown”.

Proposition 9: Let (N,V) be a TU form with corresponding coalitional
function v. If 0 = p(S) <1 for all S then there is a unique SP equilibrium,

whose payoffs (aS)ScN satisfy

i i '
ag z BL(S) agy, * kzs 7 (S [v(S)-v(S\k)] (4)
[

keS\i

for all i e S ¢ N.
Formula (4) may be understood as follows. The first term is the

expectation zkeS Bk (aS\k , 0) of the payoff vectors of the subcoalitions S\k,

completed into S-vectors by giving O to the dropped out player k (note that
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ZkeS Bk = 1). For the second term, the expected® marginal contribution
Bk [v(S)-v(S\k)] of each player k is divided between all the members i of S,

in proportion to the probabilities that i was the proposer when k dropped out.

Before proving Proposition 9, we will analyze a number of interesting
cases. For the first four, (a)-(d), we assume that all players have the same
probability of being the proposer (thus o, = /s for all i € S) and the
probability of "repeat” is the same whoever was the proposer (i.e., P, =P for

all i € S). This implies Bk = 1/s for all k € S.

(a) Only the proposer drops out: This is the model of the previous
sections. Here Nk = 1/s and ik = O for i # k, yielding the Shapley value.
Note that (4) in this model becomes formula (3) for the TU-case (see the Proof

of Proposition 4, and the Remark following it).

(b) Only the responders (but not the proposer) drop out, all with equal

probability: Here ek = 0 and Vi = 1/[s(s-1)] for i # k. It is easy to

check that a; = v(S)/s for all S and all i € S satisfies the resulting
recursion (4). We thus obtain the "equal split" solution ES (of course,
relative to (0, ..., 0)). This means, in particular, that -- in contrast to
case (a) -- the solution is not sensitive to the worth of subcoalitions.

31 The marginal contribution v(S)-v(S\k) of player k is weighted by By since
it can matter only to the extent that k drops out -- whence his marginal
contribution is lost -- and this has overall probability By.
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(c) The proposer drops out with probability {(l-p)8, and all responders
drop out with equal probability (of (1-p)(1-8)/(s-1) each), for some 0 < 6 < 1
(Dagan [1992]32): Here the probabilities Bk and ¥ are the average of the
corresponding probabilities in the previous two cases (with weights 6 and 1-6,
respectively). The linearity of the formula (4) in these probability
coefficients implies that the solution is © Sh + (1-8) ES (where Sh is the

Shapley value and ES is the equal split value of (b) above).

(d) All players drop out with equal probability: Here 7i,k = 1/s2 for
all i and k. The resulting solution is different from the previous ones
(thus, it 1is neither the Shapley value nor the equal split solution).
However, for large n, it is easy to see that it is close to the equal split

solution of (b) (a minor boundedness condition is needed here).

(e) Unequal probabilities of being the proposer and of dropping out, and

only the proposer drops out (Gomes [1991]33): Here Bk and Vi = 0 for

- Tk
i # k. If each player i € N has his own probability w, of being chosen the
proposer (these are updated as the game proceeds by conditioning on the set of
active players; i.e., o‘i(S) = w / ZjGS wJ. for all S) and his own survival
probability P; {independent of S), then the solution resulting from (4) is

precisely the weighted Shapley [1953a] value relative to the weights’ vector

( Wi(l_pi) )ieN (see also Kalai-Samet [1985] and Hart--Mas-Colell [1989]).

32 This case has been studied by Nir Dagan; he obtained the characterization

of the solution directly, without using Proposition 9.
33 Again, the characterization of the solution in this case has been obtained
by Armando Gomes directly.
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Proposition 9 enables us to characterize which of these bargaining

procedures lead to the Shapley value.

Corollary: The SP equilibrium payoffs coincide with the Shapley value
for all TU-games if and only if the bargaining procedure satisfies

Bk(S) =% k(S) = 1/|S| and ¥, (S) = 0 when i # k, for all k e Sc N .

k

Proof: Applying (4) recursively yields a]ij as an average of terms of the
form v(S)-v(S\k), for various S and k € S, possibly distinct from i. To
obtain the Shapley value, only the marginal contributions of i can matter,
therefore ik = O whenever i # k. The equality of the Bk’s is implied by

symmetry. [

Recall the discussion of Section III on the axioms of the Shapley value.
All the bargaining procedures of this section clearly lead to solutions that
satisfy the efficiency and the linearity axioms. The Corollary says that to
obtain the Shapley value one needs, first, that only proposers (but not
responders) may drop out; and second, that the probabilities o-i(l—pi) of
dropping out should be equalized across the players. The first condition is

related to the null player axiom3%, and the second to the symmetry axiom.

3% If a player other than the proposer may drop out after rejection, then a

null player, when he is the proposer, has bargaining power. Indeed, it is the
proposer that essentially gets the marginal contribution of the dropped out
player.
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|

Proof of Proposition 9: The line of proof parallels that of Proposition
7, and we will not repeat the arguments here. The recursion proceeds as
follows: A proposer i € S proposes to each other player j in S\i the expected

payoff of next round, namely

o J J
a5, =P e ) Tk]i %s\k
keS
(where for convenience we define a;\j as O; also, recall that all the

probabilities may depend on S). The proposer then takes all the surplus (so

the total is v(S)), namely

i i
) k)i By * VSIVISNK]
keS

(recall that the coordinates of a_ add up to at most v(S), and those of a

S S\k

to v(S\k), which is at most v(S) by the monotonicity assumption (A.3)). Fix i
i

in S. Taking expectation of aSj

over j (with probabilities o*J.), we obtain

P i i )
ag = Z o*J. p~j ag + Z z o*J. Tk|j agy * Z o, Tk!i {v(S)-v(S\k)] .
Jjes jeS keS keS

Moving the term to the left-hand side, dividing throughout by

N
S
l-p=1-YY. 0. p.
P ZJ §Pj

in the middle term yields (4). {]

= ZJ. o*‘j (1—pJ.) , and finally changing the order of summation
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Consider now the NTU-case. It can be easily checked that formula (4) of
Proposition 9 may be extended to hyperplane games (in the same way that
Proposition 7 extends Theorem 2) and, when all the pi(S) approach 1, also to

the general NTU case. One just needs to replace the term v k(S) [v(S)-

. Joad JooJ i
v(S\k)] in formula (4) by wi,k(S) [ZjeS AS ag ZjeS\k AS aS\k] / AS , where
AS € R§+ is the unique supporting normal to the boundary of V(S) at ag - It

is easily seen that this is just equation (c) of Proposition 4. Recalling the

previous Corollary, one obtains the following important implication.

If the bargaining procedure yields the Shapley value in
the TU-case, then it yields the consistent value in the

NTU-case.

So, from the non-cooperative viewpoint espoused in this paper, the consistent

value is the appropriate NTU generalization of the Shapley TU-value.

Finally, we note that one could also consider models where, after
rejection, each player has a certain probability of dropping out,
independently of the other players. If these probabilities are small and of
comparable size, then the terms corresponding to more than one player dropping
out become relatively negligible, and we are back, essentially, to models

where only one player may drop out.
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VII. Interpretation and Discussion

In this section we discuss some interpretative issues concerning our
setup, both in terms of the coalitional form and of the non-cooperative
bargaining game used. Plainly, the two are strongly interconnected. The
particular conflict situation that wunderlies the coalitional form being
studied is an essential factor in judging the appropriateness of any
bargaining procedure. In order to fix ideas, it may be useful to consider
some examples. We will do this within the familiar framework of economic
models, but it should be clear to the reader how to interpret them more

generally.

Suppose that we have a freely transferable consumption good and that
utility functions depend only on this good and are linear in it (that is, we
are in a TU setup). There is also a production function f(x) for the
consumption good, where x is a vector of inputs (which yield no utility).
Every member i of society owns a vector of inputs wi. As a first example we
assume that the “"technology" f(x) is freely available and replicable, i.e.
every individual or group can use it without limit or congestion. Then
v(S) = f(zieswi) is the amount of utility that a group of people S could get
"by themselves". This can mean what they get if they separate and form their
own economy or, indistinctly, what they get if they were alone in the world
(i.e., if the rest of people had separated, or did not show up). The
bargaining procedure can be applied to this economy without difficulty and it

yvields a perfectly sensible outcome: the Shapley value.
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Our non-cooperative bargaining game (or at least its stationary
equilibria) does not really allow for strategic coalition formation. When
applied to the economy in the previous example, where groups of agents can
actually separate (and still have access to the technology), this may be seen
as restrictive.3® We are thus led to consider the following variation of the
example. Suppose now that the technology is not replicable: the function f{x)
captures the productivity not only of the vector x of resources, but also of
some underlying, indivisible, jointly owned resource. There 1is then a
distinction between what a group S can get if they are the members of society
(and, therefore, control the common resource), which is f(ZieSwi), and what
they would get if they had left society, a lower amount. This is a model
where, because separating coalitions cannot take the common resource with
them, their strategic significance is much diminished. Interpreting v(S) as
f(zieSwi) we have, in consequence, an instance that our non-cooperative game
fits very naturally. In particular, it allows us to exploit the distinction
we have made between the level of utility ri (which is what agent i gets if he
is the only one left in society, hence in full control of the joint resource;
in this case, r‘i = f(wi)) and the level 0, which is what player i gets if he
separates (what really matters is that he gets a level of wutility of at most

rl). The current example requires this distinction, which our model allows.

35  Allowing for strategic coalition formation leads, on the cooperative side,

to domination and core related ideas, and, on the non-cooperative side, to the
models of Harsanyi (1974], Selten [1981]), Baron--Ferejohn [1987], Chatter jee--
Dutta--Ray--Sengupta ([1993], Bennett [1991], Perry--Reny [1994], Okada [1991],
and others.
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To elaborate further we emphasize that from the standpoint of our
bargaining procedure the number v(S) (or the set V(S) in the NTU case) is the
utility accruing to the members of S if they are the remaining players at the
end of the game. Accordingly, 1"i is the payoff if only player i is left. As
indicated, our formal model allows for the utility of a player that leaves the
game to be less than r‘i (it is this amount that we have normalized to be
zero). As we have seen, the scope of possible applications is thus increased.
We should add that we could go further and specify also the utility of groups
of players leaving the game. We do not do so, however, because in our
bargaining procedure players leave the game, if at all, one at a time. Also,
we are assuming that the "coalition" of expelled players does not form: the

utility of a dropped-out agent is fixed at zero when he leaves the game.

A limit instance of the last example is when there are no individual
resources, but only the jointly owned, indivisible, resource. Then,
normalizing, the coalitional form has v(S)=1 for all non-empty S, i.e.,
v(S) = 1 is the utility that S gets if S has the resource; the utility of not
having the resource is zero. Our mechanism applies well to this (monotonic
but not supperadditive) situation. It may be useful to offer a brief
discussion. The unique SP equilibrium of the game gives 1/n to every player.
If p is small, say p = 0, then this is true only in expectation. In fact,
being selected a proposer is "bad news" since here a proposer has no
bargaining power. If he demands anything for himself he will be rejected for
sure: some other player must be getting a proposal of less than 1/(n-1), the

expected payoff in the continuation for a player that rejects. So the
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proposer can only get O. If however p is large, i.e., close to 1, then we
know that (at the SP equilibrium) proposals depend very little on who is
chosen to be the proposer: the remaining players will accept an offer slightly
above 1/n (hence leaving almost 1/n to the proposer). What happens is that a
respondent takes into account that with high probability the same situation

will repeat, and in that case he may be chosen to the "hot seat" of proposer.

In the context of the class of examples considered up to now, the meaning
of the expression "player 1 is dropped out" is clear: it means that the
player loses the benefit of the wuse of the joint resources, while the
remaining players lose the benefit of the use of his resources. We are
referring to "resources" in order have a specific model in front of us. But
there can be others. In fact, in all generality, we would dispense with the
coalitional form and simply have a strategic or normal form supplemented by a
specification of commitment procedures to joint play in the normal form. The
bargaining game will then be concerned with the determination of the agreed

upon joint play.

Note also that the possibility of "dropping out" gives power and imposes
servitude to a proposer. As for the power, we could imagine that, when chosen
as proposer, a player is automatically committed to a threat of a random
withdrawal (perhaps destruction) of his own resources.3® As for the servitude,

the cost of withdrawal does not need to be viewed as a physical disappearance,

36 Hence there is no strategic choice of threats here. See Myerson [1991],
for a similar point in relation to the Nash bargaining solution.
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but merely as a loss of veto power. We could put the matter as follows. We
deal with bargaining situations where in principle the unanimous consent of
all the participants is required. Yet we do not want individual players to
hold out on an agreement forever. Ours is a simple way to accomplish this
effect: when a player is called upon to be a proposer he loses his current
veto power -- he must make a proposal. Of course, he can exercise veto power
indirectly by formulating a proposal that will be rejected, but then he runs
the risk of losing his veto power forever: he has had "his chance" and been
"frivolous" about it (in the model of this paper it is important that losing
veto power be costly to an individual, i,e.,, 0 = r). In other words,
consent can be given either actively and explicitly or by "getting out of the

way". The latter will typically have collective and individual costs.

We conclude by suggesting a number of issues that deserve further
investigation: (a) Exploring additional non-cooperative bargaining games --
beyond those of Section VI; in particular, allowing the possibility of
strategic coalition formation. {b) Investigating the relation between the
consistent value and the Walrasian equilibria in large economies.37 (c)
Studying non-cooperative solution concepts less strict that SP equilibrium;

for example, non-stationary perfect equilibria,3® or limits of perfect

37 See Hart--Mas-Colell [1995] for an example in a related context (the
Harsanyi NTU-value), where a lack of quasilinearity (that is, a presence of
strict curvature in &8V(S) ) leads to a breakdown of the Value equivalence
principle.

38  See Krishna--Serrano [1993] for the TU-case.
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equilibria of finite horizon games (as the length of the game increases).3?

(d) Providing axiomatizations for the consistent value. 40
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