A71.175
(20)

Biblioleca S

Who a series

Economics Working Paper 114

Bargaining and Value*

Sergiu Hart[†] and Andreu Mas-Colell[‡]

February 1995**

Keywords: Bargaining, Shapley value, stationary equilibrium, non-transferable utility games, coalitional form, non-cooperative foundation.

Journal of Economic Literature classification: C71, C72, D50, D51.

We thank the National Science Foundation and the U.S. - Israel Binational Science Foundation for financial support, the State University of New York at Stony Brook for its hospitality during part of this research, and the referees and editor of *Econometrica* for their comments.

[†] Department of Economics; Department of Mathematics; and Center for Rationality and Interactive Decision Theory, The Hebrew University of Jerusalem, Givat-Ram, 91904 Jerusalem, Israel.

[‡] Department of Economics, Harvard University, Cambridge, MA 02138, U.S.A.; and Department of Economics, Universitat Pompeu Fabra, 08008 Barcelona, Spain.

^{**} Previous versions: July 1994, February 1994, July 1992 (titled "A Model of n-Person Bargaining"), June 1991 (handout).

Abstract

We present and analyze a model of non-cooperative bargaining among n participants, applied to situations describable as games in coalitional form. This leads to a unified solution theory for such games that has as special cases the Shapley value in the transferable utility (TU) case, the Nash bargaining solution in the pure bargaining case, and the recently introduced Maschler-Owen consistent value in the general non-transferable utility (NTU) case. Moreover, we show that any variation (in a certain class) of our bargaining procedure which generates the Shapley value in the TU setup must yield the consistent value in the general NTU setup.

I. Introduction

In this paper we consider the problem of distributing the benefits or costs of a cooperative endeavor among n participants. In doing so it is important to permit this distribution to be influenced by the possibility of partial cooperation, that is by the possibility that the final outcome of the cooperative process involves only a subgroup of the players. To capture this effect we describe the cooperative situation by means of a game in coalitional form.

When utility is transferable across players (the *TU case*), cooperative game theory has generated (axiomatically) a well established solution concept: the *Shapley* [1953b] value. For n-person pure bargaining models (that is, problems where the only possible final outcomes are either the complete cooperation of all players or the complete breakdown of cooperation), with or without transferable utility, a central solution concept suggested by axiomatic cooperative game theory is the *Nash* [1950] bargaining solution (a modern textbook reference is Myerson [1991]).

The centrality of the Nash bargaining solution for pure bargaining situations has been much reinforced by its emergence as the (limit of) equilibria of natural non-cooperative bargaining procedures. The most prominent of these is the Stahl - Rubinstein alternating offers model and its variations (e.g., Osborne--Rubinstein [1990]). In the TU-case, bargaining

models leading to the Shapley value have also been suggested, e.g., Harsanyi [1981], O. Hart--Moore [1990], Winter [1994] and, most especially, Gul [1989].

The following extension problem arises immediately: taking as reference points the Nash bargaining solution for pure bargaining problems and the Shapley value for TU problems, what is their proper generalization to the class of all non-transferable utility (NTU) games in coalitional form? There are some classical solutions, namely the Harsanyi [1963] and the Shapley [1969] NTU-values (the latter is also known as the " λ -transfer value"). The theory, however, is much less settled for this general NTU case.

In this paper we pursue the above extension program by means of a non-cooperative bargaining approach. We first propose a simple and natural bargaining procedure (a variation of the alternating offers method) that supports both the Nash bargaining solution for pure bargaining problems and the Shapley value for TU problems. Our contention is that the bargaining procedure fits and unifies these two problems rather well and that therefore it constitutes a good launching pad for an investigation into the appropriate solution for the general case, where partial breakdown is possible and where utility is not fully transferable.⁴

Our bargaining procedure follows tradition in setting up a sequential, perfect information game, where at each stage a player becomes a proposer.

⁴ We note that our paper can also be viewed as pertinent to the research program of implementation theory. In this context what should be emphasized is the simplicity of the mechanism we propose.

The proposers are chosen at random and the meetings are multilateral (thus we depart from the pairwise meeting technology of Rubinstein--Wolinsky [1985], Gale [1986] or Gul [1989]). The requirement for agreement is unanimity. The key modeling issue is the specification of what happens if there is no agreement and, as a consequence, the game moves to the next stage. It is at this point that subgroups are made to matter by allowing for the possibility of partial breakdown of negotiations. Clearly, there are many ways to model such a partial breakdown. In the body of this paper we concentrate on a particular and simple class: disagreement puts only the proposer in jeopardy. That is, after his proposal is rejected, the proposer may cease to be an active participant. The non-cooperative solution concept we use is that of stationary subgame perfect equilibrium. The formal model is set up and discussed in Section II.

In Section III we observe that our equilibria do indeed yield, as the probability of breakdown goes to zero (that is, as the cost of delay becomes small), the Nash bargaining solution for the pure bargaining situations and the Shapley value for transferable utility situations. The heart of this paper are sections IV and V where we tackle the solution extension problem. When analyzing the limits of our non-cooperative equilibria as the probability of breakdown becomes small, we come to a surprise. These limits are none of the most familiar solutions (the Harsanyi and the Shapley NTU values) but, quite remarkably, they are precisely the consistent values introduced recently by Maschler--Owen [1989, 1992], from completely different considerations. This was unexpected to us and we would like to think that if two sets of

motivations lead to the same object then something must be right with it. In our view this demonstrates that a non-cooperative approach to cooperative solutions can have a positive feedback on the cooperative theory itself, by helping to clarify the solution theory over the less established territory.

The consistent value is easy to define and analyze and we do so in Section IV. Section V presents the general convergence result. In Section VI we explore a broader range of bargaining procedures: in particular, we allow for the possibility that players other than the proposer may be the victims of bargaining breakdown. However, we show that if the bargaining procedure yields the Shapley value in the TU-case, then necessarily the consistent value obtains in the NTU-case. Thus the consistent NTU-value is, according to our non-cooperative approach, the appropriate generalization of the Shapley TU-value. In Section VII and last we address issues of interpretation and suggest possible directions for further research.

II. The Model

Our basic data is an n-person coalitional form⁵ (N,V). To be precise, N is a finite set of n players and $V(\cdot)$ is a function that assigns a subset V(S) of R^S to every coalition $S \subset N$. An interpretation is that V(S) contains all the payoff vectors to the members of S that would be feasible if S was the

⁵ To avoid using the term "game" with different meanings we refer to (N,V) as an n-person form rather than an n-person game.

group of deciding players. For a detailed discussion on this point we refer the reader to Section VII.

Note that V(S) is a set, not a number. We are thus in the general case of a non-transferable utility (NTU) coalitional form. We impose on (N,V) some standard hypotheses:

- (A.1) For each coalition S, the set V(S) is closed, convex and comprehensive (i.e., V(S) R_+^S c V(S)). Moreover, $0 \in V(S)$ and $V(S) \cap R_+^S$ is bounded⁶.
- (A.2) For each coalition S, the boundary of V(S), denoted ∂ V(S), is smooth (i.e., at each boundary point there is a single outward normal direction) and non-level (i.e., the outward normal vector at any point of ∂ V(S) is positive in all coordinates)⁷.
- (A.3) Monotonicity: $V(S) \times \{0^{T \setminus S}\}$ $\subset V(T)$ whenever $S \subset T$ (i.e., if one completes a vector in V(S) with⁸ 0's for the coordinates in $T \setminus S$, then one obtains a vector in V(T)).

⁶ The requirement $0 \in V(S)$ for all S is just a convenient normalization that we make without loss of generality. The whole theory is invariant under translations of the utilities' origins.

 $^{^7}$ Actually, the smoothness and non-levelness conditions are needed only for vectors in $\partial V(S) \, \cap \, R_+^S.$

⁸ Recall the normalization in (A.1).

For each $i \in N$, let $r^i := Max \{ c : c \in V(i) \} \ge 0$ (by (A.1)). Denote $r_S = (r^i)_{i \in S} \in R^S$. The form (N,V) has already been normalized (in (A.1)) and, therefore, we cannot put $r^i = 0$. The significance of the distinction between r^i and 0 will become clear later on in this Section and in Section VII. Of course, $r^i = 0$ for all i is possible; but note that in general (A.3) does not even imply $r_S \in V(S)$. (A trivial counterexample is the TU game given by v(S) = 1 for all non-empty S.)

Two particularly simple classes of coalitional forms (N,V) are the transferable utility (TU) coalitional forms, i.e. those for which there is a real-valued function $v(\cdot)$ such that $V(S) = \{c \in R^S : \sum_{i \in S} c^i \le v(S)\}$ for all $S \in N$; and the pure bargaining coalitional forms, which we formally define as those where $S \in \partial V(S)$ for all $S \ne N$, and $S \in V(N)$.

We now describe the sequential non-cooperative game to be analyzed. Let (N,V) be an NTU-game and $0 \le \rho < 1$ be a fixed parameter. Then the *n*-person non-cooperative game (associated to (N,V) and ρ) is defined as follows:

In each round there is a set $S \in N$ of "active" players, and a "proposer" $i \in S$. In the first round S = N. The proposer is chosen at random out of S, with all players in S being equally likely to be selected. The proposer makes

In the TU-case we will use (N,V) and (N,v) interchangeably. As usual, we put for convenience $v(\varnothing)=0$.

The bargaining problem will be denoted $(r_N, V(N))$; r_N is the "disagreement point" and V(N) is the set of "feasible agreements".

a "proposal" which is feasible, i.e. a payoff vector in V(S). If all the members of S accept it -- they are asked in some prespecified order -- then the game ends with these payoffs. If it is rejected by even one member of S, then we move to the next round where, with probability ρ , the set of active players is again S and, with probability $1 - \rho$, the proposer i "drops out" and the set of active players becomes 11 S\i. In the latter case the dropped out proposer i gets a final payoff of 0.

While the game can potentially last infinitely many periods, it is plain that, whatever the strategies, with probability one the game will terminate in finite time and the expected payoffs at termination are well-defined.

It is clear that if we are dealing with a pure bargaining coalitional form and $r_{\rm N}=0$ then the above non-cooperative game is the (unessential) variation of the Rubinstein bargaining model where the proposer is chosen at random at every step. It is well known that for Rubinstein style models with more than two players folk-like theorems for perfect equilibrium apply (see the example of Shaked in Chapter 3 of Osborne--Rubinstein [1990]). Therefore there is no hope for sharp predictions in our (more general) setting if the solution concept is merely (subgame) perfectness. Thus we shall take the

We write S\i for the more cumbersome S\{i\}.

See Jun [1989], Chae--Yang [1988] and Krishna--Serrano [1990] for some modified procedures yielding unique perfect equilibrium payoffs for a broad class of pure bargaining problems. In our model, the set of perfect equilibrium payoffs is investigated in the TU-case by Krishna--Serrano [1993].

familiar route of concentrating on *stationary* (*subgame*) *perfect* (*SP*) *equilibria*, that is, on those subgame perfect equilibria where strategies are such that the choice at each stage only depends on the set of active players S and on the current proposer i, but neither on history nor even on calendar time. ^{13,14,15} We remark that a stationary perfect equilibrium is first and foremost a perfect equilibrium and, in terms of its strategic basis, is therefore as "valid" as any other perfect equilibrium. However, it is the simplest type of perfect equilibrium and so it is the natural starting and reference point of the analysis.

We will now proceed to characterize the SP equilibria. To facilitate exposition we will assume that both proposers and respondents break ties in favor of quick termination of the game¹⁶. Given a profile of stationary strategies, let $a_{S,i} \in \mathbb{R}^S$, for $i \in S \subset N$, denote the proposal when the set of active players is S and the proposer is i. Let $also^{17} a_S := (1/|S|) \sum_{i \in S} a_{S,i}$ be their average. (Note: if some of the $a_{S,i}$ are random, i.e., if mixed strategies are used, we let a_S be the expected average. We will see immediately after Proposition 1 that, with tie-breaking as above, mixed strategies are not used in SP equilibria). The following Proposition spells out the basic equations of an SP equilibrium.

As the respondents reply in sequence we note that their responses may depend on what previous respondents did in the same stage.

We emphasize that we deal with a true equilibrium, i.e. deviations may be non-stationary.

In our case, S and i are also the payoff relevant variables and so the SP equilibria are the Markov perfect equilibria of Maskin--Tirole [1988].

 $^{^{16}}$ No tie-breaking assumptions are needed in our model; we use them only to get simpler statements. We thank Motty Perry for pointing this out.

The number of elements of a finite set A is denoted |A|.

Proposition 1: The proposals corresponding to an SP equilibrium are always accepted, and they are characterized by:

$$a_{S,i} \in \partial V(S) \text{ for all } i \in S \subset N; \text{ and}$$
 (1)

$$a_{S,i}^{j} = \rho \ a_{S}^{j} + (1-\rho) \ a_{S\setminus i}^{j} \quad for \ all \ i, \ j \in S \subset N \ with \ i \neq j; \tag{2}$$

where $a_S = (1/|S|) \sum_{i \in S} a_{S,i}$. Moreover, these proposals are non-negative (i.e., $a_{S,i} \in R_+^S$ for all S and i).

In words, (2) says that j will be proposed by i the expected amount that j would get in the continuation of the game if the proposal is rejected.

Proof: We proceed by induction. The Proposition trivially holds for the 1-player case. Suppose it holds when there are less than n players. Let $a_{S,i}$, for $i \in S \subset N$, be the proposals of a given SP equilibrium. We will show that (1) and (2) are satisfied. Denote by $c_S \in R^S$ the expected payoff vector for the members of S in the subgames where S is the set of active players. Because V(S) is convex we must have $c_S \in V(S)$. The induction hypothesis implies that $a_S = c_S$ and that (1), (2) are satisfied for $S \neq N$.

Monotonicity and convexity (see (A.3) and (A.1)) imply $\rho \ c_N + (1-\rho) \ (a_{N \setminus i} \ , \ 0) \in V(N) \ \text{for any i.} \quad \text{Increasing the i-th coordinate }$ until reaching the boundary $\partial V(N)$ (recall (A.1)) determines the vector d_i on

the boundary $\partial V(N)$ of V(N) with $d_i^j = \rho \ c_N^j + (1-\rho) \ a_{N \setminus i}^j$ for $j \neq i$. Thus, $d_i^i \geq \rho \ c_N^i$. For $j \neq i$, the amount d_i^j is precisely the expected payoff of j following a rejection of i's proposal. Therefore d_i is the proposal which is best for i among the proposals that will be accepted if i is the proposer (it gives to all other j's the minimum they would accept). In addition, any proposal of i which is rejected yields to i at most $\rho \ c_N^i + (1-\rho) \ 0 \leq d_i^i$. Hence, player i will propose $a_{N,i} = d_i$ and the proposal will be accepted. From this it follows that $c_N = a_N$.

It remains to show that $a_N^i \ge 0$. To see this note that the following strategy will guarantee to i a payoff of at least 0: accept only if offered at least 0 and, when proposing, propose $0 \in V(N)$. This implies that $a_{N,i} \ge 0$.

Conversely, we show that proposals $(a_{S,i})_{S \in N, i \in S}$ satisfying (1) and (2) can be supported as SP equilibria. Note first that they are all non-negative. Indeed, the $a_{N,i}$ are in V(N), and therefore, by convexity, so is their average a_N . Moreover $(a_{N\setminus i},0) \in V(N)$ (by monotonicity and $a_{N\setminus i} \in V(N\setminus i)$), implying that $b_i := \rho \ a_N + (1-\rho) \ (a_{N\setminus i},0) \in V(N)$. Now $a_{N,i}$, which lies on the boundary of V(N), coincides with b_i on all coordinates except the i-th. Therefore, $a_{N,i} \geq b_i$. Moreover, $b_i \geq \rho \ a_N$ (since, by the induction hypothesis, $a_{N\setminus i} \geq 0$). Averaging over i yields $a_N \geq \rho \ a_N$ and we conclude that a_N is nonnegative (and therefore so are all the $a_{N,i}$).

From here it is straightforward to verify that the strategies corresponding to these proposals do form an SP equilibrium. By the induction

hypothesis, this is so in any subgame after a player has dropped out. Fix a player i in N. The strategies of the other players do not allow player i to increase his payoff from proposals that are accepted -- at any stage, and whether proposed by i himself or by other players. Therefore the only conceivable gain can come by managing to drop out. But this gives a payoff of O, whereas the suggested strategy yields non-negative payoffs.

Note that (1) implies that $a_{\{i\},i} = r^i$. Hence $a_{\{i\},i}$ is non random, which iterating in (2) (recall that a_S has been defined to be the *expected* payoff vector, thus non-random), yields that $a_{S,i}$ is non-random. Therefore, under the given tie-breaking rule, there are no mixed strategy SP equilibria.

In general, $a_{N,i} \neq a_{N,j}$ if $i \neq j$. Therefore, from $a_{N,i} \in \partial V(N)$ for all i it does not follow that their average a_N belongs to $\partial V(N)$ (it will not be if V(N) is strictly convex). Hence the payoffs need not be efficient. However, we note the following important fact, which is readily implied by (2):

Corollary: Let $(M, ..., M) \in \mathbb{R}_+^N$ be an upper bound for the set $V(N) \cap \mathbb{R}_+^N$. Then $|a_{N,i}^j - a_N^j| \le M$ $(1-\rho)$ for all i, j in N.

Note that being the proposer is not necessarily an advantage, i.e., $a_{N,i}^i \geq a_N^i$ need not hold. Consider the buyer i=1 in the "2-buyers, 1-seller" game: v(1)=v(2)=v(3)=v(12)=0, v(13)=v(23)=v(123)=1. Here $a_{N,1}^l=\rho/6$ and $a_N^l=1/6$.

Thus, if ρ is close to 1 -- i.e., if the "cost of delay" is low -- then there is little dispersion among individual proposals: all the $a_{N,i}$ constitute small deviations of a_{N} . This implies, first, that a_{N} is almost Pareto optimal (since the $a_{N,i}$ are Pareto optimal). And second, that there is no substantial advantage or disadvantage to being the proposer; the "first-mover" effect vanishes.

We conclude this section with a few remarks. First, observe that ours is a simple model where the breakdown of negotiations is not an "all or nothing" matter. When a player leaves the game, the rest continue bargaining (albeit over a diminished "pie"). Thus in our model the breakdown of negotiations is only partial, and the attainable sets of the intermediate coalitions have significant influence over the final outcome, a feature that is absent in the extreme pure bargaining case.

Second, we do not consider time discount. The cost of delay in agreement is present in the form of the breakdown probability ρ . Time discount would not add anything essential to the analysis. If so desired, however, it could be incorporated with only minor modifications of the conclusions.

Finally, from the nature of the non-cooperative game and the solution concept (see Proposition 1) it makes sense that payoffs should be considered for all coalitions simultaneously. So a payoff configuration (p.c. for short) is defined to be an element $\mathbf{a} = (\mathbf{a_S})_{\mathbf{S} \subset \mathbf{N}}$ of $\Pi_{\mathbf{S} \subset \mathbf{N}}$ $\mathbf{R}^{\mathbf{S}}$; that is, a list of payoff vectors, one for each subcoalition $\mathbf{S} \subset \mathbf{N}$.

III. The analysis of two classical cases

In this section we consider the simplest examples of coalitional forms: the Transferable Utility and the Pure Bargaining cases. The results of this section are special cases of the general theorem of Section V. We begin with the TU case; the result follows from Proposition 7 and from the Corollary to Proposition 1 in the previous section.

Theorem 2: Let (N,V) be a TU form with corresponding coalitional function v. Then for each $0 \le \rho < 1$ there is a unique SP equilibrium. Moreover, for every S: (i) the SP equilibrium payoff vector \mathbf{a}_S equals $\mathrm{Sh}(S,v)$, the Shapley value of the coalitional form¹⁹ (S,v); and (ii) the SP equilibrium proposals $\mathbf{a}_{S,i}$ converge as $\rho \to 1$ to the Shapley value $\mathrm{Sh}(S,v)$ for all i in S.

We have thus obtained the Shapley value in a non-cooperative manner. For ρ close to 1, the "equilibrium path" consists of the first proposer proposing a payoff vector that is close to the Shapley value of the game, and everyone accepting it (which ends the game).

 $^{^{19}}$ (S,v) denotes the restriction of (N,v) to S; i.e., the player set is S and the coalitional function is the restriction of v to 2^S .

Suppose that the coalitional form is generated from a standard (quasi-linear) convex economy, e.g., participants own inputs which enter into a constant-returns concave production function for utility. Then the value-equivalence theorems (starting with Shapley [1964]; see Cheng [1996] for a survey) tell us that if the number of participants is large, then the Shapley value allocations, hence the SP equilibrium payoffs of our non-cooperative game, are nearly Walrasian. At least for the case where ρ is close to 1 we could say that our economy functions as if a "referee", chosen at random, announces a price system that is accepted by all participants and clears markets.

One way to gain intuition on the result of Theorem 2 is to consider the well-known axioms of the Shapley value (e.g., Myerson [1991] or Owen [1982]). In the TU case the payoff configurations that solve the system of equations (1)-(2) are clearly linear in v, symmetric relative to the labels of the players, and Pareto efficient. Hence the key issue is the fulfillment of the null player (or dummy) axiom, which asserts that if $v(S) = v(S \setminus i)$ for all coalitions S containing player i (thus also $r^i = v(i) = 0$), then i should get 0. To see the plausibility of our equilibrium payoffs satisfying this axiom, take for clarity the extreme case where $r^{20} = 0$. Then rejected proposers are eliminated for sure from the game (which will therefore terminate in at most n steps). The null player axiom obviously holds for one-player coalitional forms. Suppose it holds for coalitional forms with less than n players. Let now i be a null player in the n-person game. If the proposer is $j \neq i$, then i

²⁰ This case was considered in Mas-Colell [1988].

will be offered (recall that $\rho=0$) his payoff in the N\j continuation, which is 0 by the induction hypothesis. If i is the proposer then any proposal that gives to the remaining players in total less than $v(N\setminus i)$, which is what they will get in the next stage, will be rejected by at least one of them. Hence i can get at most 0, and we conclude that the null player axiom holds. (See Section VI for further discussion on this issue.)

A non-cooperative implementation of the Shapley value in TU game forms has been offered earlier by Gul [1989]. Our procedure differs from his, first, in the meeting technology: Gul's unfolds through pairwise meetings. Second, in the nature of the results: Gul considers only those SP equilibria that entail immediate acceptance (other SP equilibria may yield outcomes different from the Shapley value). In our case, immediate agreement is guaranteed at all SP equilibria, and our result applies to all of them. Also, to guarantee existence, the monotonicity assumption (A.3) suffices in our model, as compared to the super-additivity assumption on the values of the subgames in Gul's case.

We come now to the pure bargaining case; the result is a particular case of Theorem 5 in Section V.

Theorem 3: Let (N,V) correspond to an n-person pure bargaining problem $(r_{\stackrel{\cdot}{N}} \ , \ V(N)). \quad \text{Then for each } 0 \leq \rho < 1 \text{ there is at least one SP equilibrium.}$ Moreover, any SP equilibrium payoff vectors $a_{\stackrel{\cdot}{N}}(\rho)$ converge to the Nash Bargaining solution of $(r_{\stackrel{\cdot}{N}} \ , \ V(N))$ as $\rho \to 1$.

We emphasize that the convergence to the Nash bargaining solution is no surprise, given that for the pure bargaining case the non-cooperative model amounts to a variation of the Rubinstein alternating offers model (see Binmore [1987], for the convergence of the latter).²¹

IV. The consistent value

This section is devoted to a preliminary study of the consistent NTU-value introduced recently, under the name of consistent Shapley value, by Maschler--Owen [1989, 1992]. We note that the assumption of the smoothness of the boundaries $\partial V(S)$ is not needed in this section.

The consistent value can be defined as follows. Let π be an order of the n players in N. For a TU-form (N,v), the marginal contributions of the players in the order π -- say the order is π = (1, 2, ..., n) -- are:

$$d^{1}(\pi) := v(1);$$

There is also a close connection to the "Nashlike solutions" N^{λ} of Thomson-Lensberg [1989, Section 8], which converge to the Nash solution as $\lambda \to 1$. Indeed, it can be checked that, when $0 < \rho < 1$, the set of SP equilibrium payoffs is precisely $(1/\rho) N^{\lambda}$, where $\lambda := \rho / [n - (n-1)\rho]$. Note that, if $n \ge 3$ and the set V(N) is not generated by a one-dimensional "pie", then one may have multiple SP equilibrium payoffs, and that without the smoothness assumption on $\partial V(N)$, the convergence to the Nash solution may fail (again, see Thomson--Lensberg [1989]). Both these phenomena arise in the standard Rubinstein alternating offers model as well.

$$d^{2}(\pi) := v(12) - v(1) = v(12) - d^{1}(\pi);$$

$$d^{3}(\pi) := v(123) - v(12) = v(123) - d^{1}(\pi) - d^{2}(\pi);$$

and so on. The extension to NTU forms is straightforward:

$$d^{1}(\pi) := \text{Max } \{ c^{1} : c^{1} \in V(1) \} = r^{1};$$

$$d^{2}(\pi) := \text{Max } \{ c^{2} : (d^{1}(\pi), c^{2}) \in V(12) \};$$

$$d^{3}(\pi) := \text{Max } \{ c^{3} : (d^{1}(\pi), d^{2}(\pi), c^{3}) \in V(123) \};$$

and so on. Thus $d^i(\pi)$ is the most that i can get (in $V(\{1,2,...,i\})$) after all the previous players j got their own $d^j(\pi)$'s. Consider now the vector of expected marginal contributions, where each one of the n! orders is equally likely: player i's payoff is $(1/n!) \sum_{\pi} d^i(\pi)$. (In the TU case, this is the Shapley value.) By definition, the payoff vectors $d(\pi)$ are efficient for every order π . However, their average will in general be inefficient — unless the boundary of V(N) happens to be flat.

The above suggests to consider first the case of a hyperplane coalitional form (H-form for short). These forms (which will play a very important technical role in our analysis²²) are defined by the property that each V(S) is a half space in \mathbb{R}^S (and thus $\partial V(S)$ is a hyperplane). For an H-form the payoff vector $\Psi(N,V):=(1/n!)\sum_{\pi}d(\pi)$ is efficient. Moreover, $\Psi(N,V)$ is precisely the consistent value for hyperplane forms introduced by Maschler--Owen [1989].

 $^{^{22}}$ A model that generates the hyperplane coalitional forms is that of the "prize games"; see Hart [1994].

Note that for TU games it coincides with the Shapley value. Observe also that efficiency obtains for every subcoalition: $\Psi(S,V) \in \partial V(S)$ for all S. We refer to $(\Psi(S,V))_{S\subset N}$ as the consistent value payoff configuration²³ of the hyperplane form (N,V). It is obviously unique.

For a general NTU form (N,V), choose for each coalition S a supporting normal vector $\lambda_S \in R_{++}^S$ to $\partial V(S)$. Let (N,V') be the resulting hyperplane game (i.e. $V'(S) := \{ c \in R^S : \lambda_S \cdot c \leq v(S;\lambda_S) \} \supset V(S)$ for all S, where $v(S;\lambda_S) := \text{Max} \{ \lambda_S \cdot c : c \in V(S) \}$). Let $\mathbf{a} := (\Psi(S,V'))_{S \in \mathbb{N}}$ be the (unique) consistent value payoff configuration of V'. If \mathbf{a} is actually feasible in the original form V, i.e., if $\mathbf{a}_S \in V(S)$ for all S, then \mathbf{a} is called a consistent value payoff configuration of the game form (N,V); see Maschler--Owen [1992]. We observe that in the pure bargaining case this gives precisely the Nash bargaining solution (it follows for instance from Proposition 4 below).

Note that the normal vectors λ_S will typically be different for distinct coalitions S. Taking them all equal (more precisely, we would let λ_S be the restriction of λ_N to S) would not work in general, since we require that $\Psi(S,V')\in V(S)$ for all S, not only for N. The consistent value treats all coalitions in the same way, thus exhibiting a property that we may call "subcoalition perfectness" 24. In contrast, the Shapley NTU-value requires the

 $^{^{23}}$ Recall that a payoff configuration is an element of $\Pi_{SCN}^{}\,R^{\hbox{\scriptsize S}}$.

Observe that there is an intimate relation between the concept of a "subcoalition perfect" solution and the concept of a "subgame perfect" equilibrium. The fact that, in the bargaining procedure, one requires the same equilibrium conditions in each subgame, thus for every remaining coalition S, implies that the solution concept must be the same for all

feasibility condition only for the grand coalition N and takes all the λ_S equal to λ_N . Also, for the Harsanyi NTU-value, the solutions for all subcoalitions are based on the weights λ_N determined from the grand coalition.

Under our hypotheses consistent values exist, by a standard fixed-point argument; see Maschler--Owen [1992]. Existence is also a corollary of Theorem 5 of the next section (since the SP equilibrium payoff configurations lie in the compact set Π_{SCN} V(S) \cap R₊^S by Proposition 1). For non-hyperplane forms consistent values need not be unique: see Owen [1994] and the next paragraph.

Suppose we had a "reverse pure bargaining problem", i.e., $r_S \in \partial V(S)$ for $S \neq N$ and $r_N \notin V(N)$. Then the consistent value payoff vectors c are characterized (apply Proposition 4 below) by the *first order conditions* (and no more than that) of the optimization problem:

Max
$$\Pi_{i \in N}$$
 (rⁱ - cⁱ), subject to $c \in \partial V(N)$ and $c < r_N$

subcoalitions.

Say n=2. The monotonicity assumption (A.3) implies that both $(r^1,0)$ and $(0,r^2)$ belong to V(12), but (r^1,r^2) could well be outside. In terms of the bargaining model, this corresponds to the case where the breakdown outcome depends on which player made the last (rejected) proposal before breakdown. Here, $(r^1,0)$ and $(0,r^2)$ are the payoff vectors if breakdown occurred after player 2 or player 1, respectively, was the last proposer. See Section VII for a more concrete discussion on this dependence.

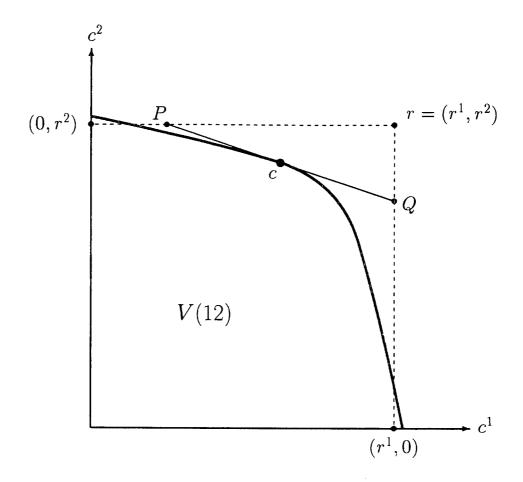


Figure 1(a)

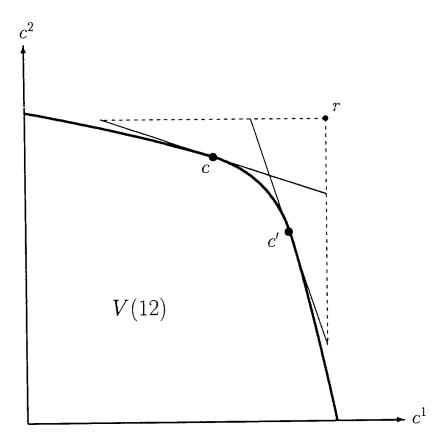


Figure 1(b)

For example, take n=2. Then (see Figure 1(a)), $c = (c^1, c^2) \in \partial V(12)$ must be the midpoint of PQ, the segment of the tangent to $\partial V(12)$ at c that lies below $r = (r^1, r^2)$. Observe that, for this type of problem, non-uniqueness can easily occur: see Figure 1(b) for an example where both c and c' are consistent value payoff vectors.

A characterization of the consistent values is as follows:

Proposition 4: Let (N,V) be an NTU form, and $\mathbf{a} = (a_S)_{S \in \mathbb{N}}$ a payoff configuration. Then \mathbf{a} is a consistent value payoff configuration of (N,V) if and only if for each $S \in \mathbb{N}$ there exists a vector $\lambda_S \in \mathbb{R}_{++}^S$ such that:

- (a) $a_S \in \partial V(S)$;
- (b) $\lambda_S \cdot a_S = v(S; \lambda_S) := Max \{ \lambda_S \cdot c : c \in V(S) \}$; and
- (c) $\sum_{j \in S \setminus i} \lambda_S^i (a_S^i a_{S \setminus j}^i) = \sum_{j \in S \setminus i} \lambda_S^j (a_S^j a_{S \setminus i}^j) \text{ for all } i \in S.$

Conditions (a) and (b) say that the payoff vector $\mathbf{a_S}$ is efficient for the coalition S, and that λ_S is an outward normal to the boundary of V(S) at $\mathbf{a_S}$ (or, stated in familiar economic terms, λ_S represents the local marginal rates of efficient utility transfers between the players at $\mathbf{a_S}$). As for condition (c), it may be viewed as a "preservation of average differences" requirement. The term "preservations of differences" has been used in Hart--Mas-Colell [1989]; it was introduced (under the name "balanced contributions") by Myerson [1980]. In the TU-case, the j-th terms on both sides are equal for the Shapley value. We could say that the contribution of j to i, measured by

 $a_S^i - a_{S \setminus j}^i$, equals the contribution of i to j, measured symmetrically by $a_S^j - a_{S \setminus i}^j$. It is known that in the TU case this preservation of differences principle does actually characterize the Shapley value payoff configuration and is also equivalent to an appropriate notion of consistency (see Hart--Mas-Colell [1989]). In the NTU case we cannot expect the j-th terms on both sides²⁶ to be equal in general²⁷. It turns out however that they are equal in average: the average contribution to i from the other players equals the average contribution of i to the other players. (One may of course replace "average" by "total").²⁸

Proof of Proposition 4: The proof is by induction. Assume the result holds for all $S \in N$, $S \neq N$. We have to show that condition (c) for S = N is equivalent to $a_N = \Psi(N,V')$, where $V'(S) := \{ c_S \in R^S : \lambda_S \cdot c_S \leq v(S;\lambda_S) \}$ for all S (the associated H-form). By definition, $\Psi^i(N,V')$ is player i-th expected "marginal" contribution over all n! orders of the players. We classify these orders into n groups according to the last player j in the order. If $j \neq i$ then the (conditional) expectation of i-th marginal contribution is the same as in $(N\setminus j,V')$, which equals $a_{N\setminus j}^i$ by the induction hypothesis. When i

Rescaled according to the rates $\boldsymbol{\lambda}_{S}$ in order to bring them to the common "local unit of account".

The reason is that the normal vectors λ_S are usually distinct for different coalitions. Dropping condition (b) and taking them all equal leads to the egalitarian solutions (which constitute the first step in the construction of the Harsanyi NTU value); see Hart--Mas-Colell [1989]. (Indeed, in this case one may easily prove inductively that condition (c) implies the preservation of differences condition.)

For hyperplane forms, condition (c) is equivalent to the "weak 2-consistency" of Maschler--Owen [1989]. For non-hyperplane forms it is however different.

comes last, the expected marginal contribution of every j ≠ i is $a_{N \setminus i}^j$ by the same argument; the remainder $(v(N;\lambda_N) - \sum_{j\neq i} \lambda_N^j a_{N \setminus i}^j)/\lambda_N^i$ is i-th contribution (recall the definition of V'(N)). Therefore

$$\Psi^{i}(N,V') = (1/n) \left(\sum_{j \neq i} a_{N \setminus j}^{i} + [v(N;\lambda_{N}) - \sum_{j \neq i} \lambda_{N}^{j} a_{N \setminus i}^{j}] / \lambda_{N}^{i} \right)$$
(3)

Taking into account that $v(N; \lambda_N) = \sum_{j \in N} \lambda_N^j a_N^j$ we have

$$\mathsf{n}\ \lambda_N^i\ \Psi^i(\mathsf{N},\mathsf{V}') \ = \ \sum_{j\neq i}\ \lambda_N^i\ a_{N\setminus j}^i\ +\ \lambda_N^i\ a_N^i\ +\ \sum_{j\neq i}\ \lambda_N^j\ (a_N^j\ -\ a_{N\setminus i}^j),$$

hence

$$\label{eq:control_norm} n \ \lambda_N^i \ (\Psi^i(N,V') \ - \ a_N^i) \ = \ \sum_{j \neq i} \ \lambda_N^i \ (a_{N \setminus j}^i \ - \ a_N^i) \ + \ \sum_{j \neq i} \ \lambda_N^j \ (a_N^j \ - \ a_{N \setminus i}^j).$$

This completes the proof, since the equality of the right-hand side to 0 is precisely condition (c).

Remark: Formula (3) (also (5.1) in Maschler-Owen [1989]) is useful for computing consistent values recursively (see for instance the two examples below): Assume that $\partial V(N)$ is a hyperplane and that $a_{N\setminus i}$ is given for all i. Complete $a_{N\setminus i}$ into an efficient N-vector²⁹ $b_i = (a_{N\setminus i}, \alpha^i) \in \partial V(N)$. Then the average $(1/n) \sum_i b_i$ of the b_i 's is a consistent value for (N,V). Note that in the case of TU-games, this yields the formula

 $^{^{29}}$ $\alpha^{\dot{i}}$ is uniquely defined since the boundary is non-level.

$$Sh(N,v) = (1/n) \sum_{i \in N} (Sh(N \setminus i, v), v(N) - v(N \setminus i)).$$

In order to develop some intuition it may be useful to compute the consistent value for some classical NTU examples.

Example (Roth [1980]): Let n = 3; V(i) = { c : c
$$\leq$$
 0 } for all i,
$$V(12) = \{ c : c \leq (1/2, 1/2) \},$$

$$V(13) = \{ c : c \leq (\epsilon, 1-\epsilon) \},$$

$$V(23) = \{ c : c \leq (\epsilon, 1-\epsilon) \}, \text{ and }$$

V(123) = { c : c \leq conv { (1/2, 1/2, 0), (ϵ , 0, 1- ϵ), (0, ϵ , 1- ϵ) } ("conv" denotes "convex hull"). Then there is a unique consistent value for λ_N = (1, 1, 1), namely a_N = (1/6 + ϵ /3, 1/6 + ϵ /3, (2/3) (1- ϵ)). It may appear, as argued by Roth, that since there is no conflict between 1 and 2 the outcome should be (1/2, 1/2, 0). But this is only if the participation of player 3 is not needed for a final agreement. If some form of unanimous consent is required then the consistent value makes a lot of sense. Players 1 and 2 cannot get 1/2 each unless 3 either agrees to it or drops out of the game. This natural interpretation of V(·) is intimately related to our non-cooperative game and thus to the consistent value (see the next two Sections). Indeed, in terms of the bargaining model, the danger to players 1 and 2 is that one of them may drop out before 3, in which case their payoffs are either 0 or ϵ . This is the source of the power of player 3 to extract a considerable amount of utility.

V. The General Result

In this section we study the equilibria of the non-cooperative game in the general NTU case.

Theorem 5: Suppose that (N,V) is an NTU coalitional form satisfying the assumptions (A.1), (A.2) and (A.3). Then for each $0 \le \rho < 1$ there is an SP equilibrium. Moreover, as $\rho \to 1$ every limit point of SP equilibrium payoff configurations is a consistent value payoff configuration of (N,V).

Theorem 5 will be proved in three steps: Proposition 6 deals with the existence of SP equilibria. Proposition 7 proves the result for the case of hyperplane coalitional forms. Finally, Proposition 8 provides the general convergence argument.

Proposition 6: Let (N,V) be an NTU form. Then for each $0 \le \rho < 1$ there is an SP equilibrium.

Proof: A straightforward fixed-point argument will take care of this. We can proceed recursively. Clearly, the result is true for n=1. Suppose now that we have a_S for all $S \neq N$ with the property that for any $T \in N$, $T \neq N$, $(a_S)_{S \in T}$ is an SP equilibrium payoff configuration for (T,V). By Proposition 1, $a_S \geq 0$ for all S. We now specify n functions $\alpha_1(b)$ from the compact convex set $V(N) \cap R_+^N$ into itself by letting $\alpha_1(b)$ be defined by: $\alpha_1(b) \in \partial V(N)$ and $\alpha_1^j(b) := \rho \ b^j + (1-\rho) \ a_{N \setminus i}^j$ for all $j \neq i$. Because of the non-levelness part of (A.2) the functions $\alpha_1(\cdot)$ are well-defined and continuous. By the convexity of the domain, $(1/n) \sum_{i \in N} \alpha_i(b)$ maps also into $V(N) \cap R_+^N$. Hence, by Brouwer's fixed point theorem, there is a vector $a_N \in V(N) \cap R_+^N$ satisfying $a_N = (1/n) \sum_i \alpha_i(a_N)$. By Proposition 1, a_N are equilibrium payoffs for N (and $a_{N,i} = \alpha_i(a_N)$ for all i). By the recursion hypothesis $(a_S)_{S \in N}$ are the payoffs of an overall SP equilibrium for (N,V).

Remark: The Proof of Proposition 6 does not make use of the smoothness hypothesis.

Proposition 7: Let (N,V) be a hyperplane form. Then for each $0 \le \rho < 1$ there is a unique SP equilibrium. Moreover the SP equilibrium payoff configuration equals the unique consistent value payoff configuration of (N,V).

Proof: We proceed by induction and assume that the statement is correct for hyperplane forms with less than n participants. Let $\lambda \in R_{++}^N$ and $V(N) = \{ c \in R^N : \sum_i \lambda^i c^i \leq w \}$. For every i,

$$\begin{array}{l} n \ \lambda^{i} \ a_{N}^{i} = \lambda^{i} \ a_{N,i}^{i} + \sum\limits_{j \neq i} \lambda^{i} \ a_{N,j}^{i} = \\ \\ = [w - \sum\limits_{j \neq i} \lambda^{j} \ a_{N,i}^{j}] + \sum\limits_{j \neq i} \lambda^{i} \ a_{N,j}^{i} = \\ \\ = [w - \sum\limits_{j \neq i} \lambda^{j} \ (\rho \ a_{N}^{j} + (1-\rho) \ a_{N \setminus i}^{j})] + \sum\limits_{j \neq i} \lambda^{i} \ (\rho \ a_{N}^{i} + (1-\rho) \ a_{N \setminus j}^{i}). \end{array}$$

Now $w=\sum_j \lambda^j a_N^j$; also $b(i):=[w-\sum_{j\neq i}\lambda^j a_{N\setminus i}^j]/\lambda^i$ is the expected marginal contribution of i in a random order, conditional on i being last. Indeed (as in the proof of Proposition 4), classify the orders according to the last player. The (conditional) expected marginal contribution of each $j\neq i$ when i comes last is the same as the expected marginal contribution of j in (N\i,V), which by the induction hypothesis is precisely $a_{N\setminus i}^j$. The remainder b(i) is then i-th contribution when he is last. Hence, the last equality becomes, after dividing by λ^i ,

$$\begin{array}{l} n \ a_{N}^{i} = \rho \ a_{N}^{i} + (1-\rho) \ b(i) + \sum\limits_{j \neq i} (\rho \ a_{N}^{i} + (1-\rho) \ a_{N \setminus j}^{i}) = \\ \\ = n \ \rho \ a_{N}^{i} + (1-\rho) \ b(i) + (1-\rho) \ \sum\limits_{j \neq i} \ a_{N \setminus j}^{i} \ . \end{array}$$

Therefore n $a_N^i = b(i) + \sum_{j \neq i} a_{N \setminus j}^i$, which yields the result: a_N^i is the expected marginal contribution of i (this contribution is b(i) when i comes last, and is $a_{N \setminus j}^i$ -- again by the induction hypothesis -- when $j \neq i$ comes last).

Finally, to show the existence of the SP equilibrium we choose $a_S := \Psi(S,V)$ for all S and then define $a_{S,i}$ by equations (1) and (2). It is easy to check (use the computation above) that, indeed, $a_S = (1/|S|) \sum_{i \in S} a_{S,i}$. Hence these proposals form an SP equilibrium by Proposition 1.

Proposition 8: Let (N,V) be an NTU form. If $\mathbf{a}(\rho)$ is an SP equilibrium payoff configuration for each ρ and \mathbf{a} is a limit point of $\mathbf{a}(\rho)$ as $\rho \to 1$ then \mathbf{a} is a consistent value payoff configuration of (N,V).

Proof: Let $\mathbf{a}=(\mathbf{a_S})_{\mathbf{S}\subset\mathbf{N}}$ and define $\lambda_{\mathbf{S}}$ to be the outward unit length normal to $\partial V(\mathbf{S})$ at $\mathbf{a_S}$. We begin by associating with every ρ a hyperplane form $(\mathbf{N},\mathbf{V_\rho})$. To this effect let $\lambda_{\mathbf{S}}(\rho)$ be the outward unit normal to the hyperplane passing through the vectors $\{a_{\mathbf{S},\mathbf{i}}:\mathbf{i}\in\mathbf{S}\}$, and let $\mathbf{V_\rho}(\mathbf{S})$ be the resulting half-space; if the hyperplane is not unique, choose $\lambda_{\mathbf{S}}(\rho)$ closest possible to $\lambda_{\mathbf{S}}$. Since $\mathbf{a_{\mathbf{S},\mathbf{i}}}(\rho)\to\mathbf{a_S}$ (by the Corollary to Proposition 1) we have $\lambda_{\mathbf{S}}(\rho)\to\lambda_{\mathbf{S}}$; the smoothness of $\partial V(\mathbf{S})$ is essential here. Therefore $\mathbf{V_\rho}(\mathbf{S})\to\mathbf{V'}(\mathbf{S}):=\{\mathbf{c}\in\mathbf{R}^{\mathbf{S}}:\lambda_{\mathbf{S}}\cdot\mathbf{c}\leq\lambda_{\mathbf{S}}\cdot\mathbf{a_S}\}$. Because of the characterization in Proposition 1, the p.c. $\mathbf{a}(\rho)$ remains an SP equilibrium p.c. for $(\mathbf{N},\mathbf{V_\rho})$, thus $\mathbf{a}(\rho)$ is the consistent value p.c. of $(\mathbf{N},\mathbf{V_\rho})$ by

Proposition 7. The continuity of the marginal contributions with respect to the hyperplanes implies that the p.c. a is the consistent value p.c. of (N,V'), thus also of (N,V).

Remark: The contrast between Proposition 7 and Theorem 5 (actually, Proposition 8) illustrates the role of assuming that ρ is close to 1: it localizes the arguments, in the sense that it guarantees that, for every S, all the proposals $a_{S,i}$ of an SP equilibrium are clustered together (Corollary to Proposition 1) so closely that, up to a second order effect, it is as if we could replace every V(S) by a linear approximation.

VI. Generalizing the Bargaining Procedure

In this section we present and study some extensions of the bargaining procedure of Section II. The aim is not complete generality, but rather to have a set-up that allows us to perform some comparative analysis. To this effect we keep the main structure of rounds, proposers and the possible dropping out of a player after the proposal is rejected. However, it is no longer necessarily the proposer that drops out, and the probabilistic structure contemplated is more general.

As before, the non-cooperative games we consider consist of (potentially) infinitely many rounds of bargaining. In each round there is a set $S \subset N$ of active players -- starting with S = N in the first round -- out of which a

proposer $i \in S$ is chosen; this is done now according to a given probability distribution $\sigma = (\sigma_i)_{i \in S}$. The proposer makes a proposal, which is a payoff vector feasible for S (i.e., it belongs to V(S)). The members of S are then asked (in some prespecified order) whether or not they accept the proposal. If they all accept it, then the game ends with these payoffs. Otherwise, if the proposal is rejected by even one member of S, then the game moves to the next round. With probability ρ_i the set of active players does not change (call this case "repeat"), while with probability $1-\rho_i$ one of the active players drops out and gets a final payoff of S (call this case "breakdown"). More precisely, the set of active players in the next round is S with probability σ_i , and it is $S \setminus K$ with probability σ_i for each $\sigma_i \in S$ (thus $\sigma_i + \sum_{k \in S} \tau_k \mid i = 1$, for all $\sigma_i \in S$). Note that all the probabilities above may depend on S (when necessary we will write $\sigma_i(S)$, $\rho_i(S)$, and so on).

Thus the player that drops out is no longer necessarily the proposer. Moreover, the various probabilities may depend on the set of active players and the proposer. The procedure we have used throughout this paper corresponds to $\sigma_i = 1/s$; $\rho_i = \rho$; $\tau_{i\mid i} = 1-\rho$ and $\tau_{k\mid i} = 0$ for $k\neq i$ (as usual, s:=|S|).

The analytical tools of the previous sections may be used to study this more general procedure. We start with the TU-case. The result will be stated

³⁰ I.e., $\sum_{i \in S} \sigma_i = 1$ and $\sigma_i \ge 0$ for all $i \in S$.

in terms of recursive equations: the solutions for the subcoalitions of S determine the solution for S. Let us introduce some notations:

$$\begin{split} & \rho(S) := \sum_{i \in S} \ \sigma_i(S) \ \rho_i(S) \ ; \\ & \gamma_{i,k}(S) := \ \sigma_i(S) \ \tau_{k \, \big| \, i}(S) \ / \ (1 - \rho(S)) \ ; \quad \text{and} \\ & \beta_k(S) := \sum_{i \in S} \ \gamma_{i,k}(S) \ . \end{split}$$

Thus, $\rho(S)$ is the total probability of "repeat" (i.e., no player drops out following a rejected proposal); $\gamma_{i,k}(S)$ is the conditional probability, given "breakdown" (i.e., some player drops out following a rejection), that the proposer was i and the dropped out player was k; and $\beta_k(S)$ is the total probability that k dropped out, given "breakdown".

Proposition 9: Let (N,V) be a TU form with corresponding coalitional function v. If $0 \le \rho(S) < 1$ for all S then there is a unique SP equilibrium, whose payoffs $(a_S)_{S \in N}$ satisfy

$$a_{S}^{i} = \sum_{k \in S \setminus i} \beta_{k}(S) \ a_{S \setminus k}^{i} + \sum_{k \in S} \gamma_{i,k}(S) \ [v(S) - v(S \setminus k)]$$

$$(4)$$

for all $i \in S \subset N$.

Formula (4) may be understood as follows. The first term is the expectation $\sum_{k\in S} \beta_k (a_{S\setminus k}, 0)$ of the payoff vectors of the subcoalitions $S\setminus k$, completed into S-vectors by giving 0 to the dropped out player k (note that

 $\sum_{k\in S} \beta_k = 1$). For the second term, the expected³¹ marginal contribution $\beta_k [v(S)-v(S\setminus k)]$ of each player k is divided between all the members i of S, in proportion to the probabilities that i was the proposer when k dropped out.

Before proving Proposition 9, we will analyze a number of interesting cases. For the first four, (a)-(d), we assume that all players have the same probability of being the proposer (thus $\sigma_i = 1/s$ for all $i \in S$) and the probability of "repeat" is the same whoever was the proposer (i.e., $\rho_i = \rho$ for all $i \in S$). This implies $\beta_k = 1/s$ for all $k \in S$.

- (a) Only the proposer drops out: This is the model of the previous sections. Here $\gamma_{k,k}=1/s$ and $\gamma_{i,k}=0$ for $i\neq k$, yielding the Shapley value. Note that (4) in this model becomes formula (3) for the TU-case (see the Proof of Proposition 4, and the Remark following it).
- (b) Only the responders (but not the proposer) drop out, all with equal probability: Here $\gamma_{k,k}=0$ and $\gamma_{i,k}=1/[s(s-1)]$ for $i\neq k$. It is easy to check that $a_S^i=v(S)/s$ for all S and all $i\in S$ satisfies the resulting recursion (4). We thus obtain the "equal split" solution ES (of course, relative to $(0,\ldots,0)$). This means, in particular, that -- in contrast to case (a) -- the solution is not sensitive to the worth of subcoalitions.

The marginal contribution $v(S)-v(S\setminus k)$ of player k is weighted by β_k since it can matter only to the extent that k drops out -- whence his marginal contribution is lost -- and this has overall probability β_k .

- (c) The proposer drops out with probability $(1-\rho)\theta$, and all responders drop out with equal probability (of $(1-\rho)(1-\theta)/(s-1)$ each), for some $0 < \theta < 1$ (Dagan [1992]³²): Here the probabilities β_k and $\gamma_{i,k}$ are the average of the corresponding probabilities in the previous two cases (with weights θ and 1- θ , respectively). The linearity of the formula (4) in these probability coefficients implies that the solution is θ Sh + (1- θ) ES (where Sh is the Shapley value and ES is the equal split value of (b) above).
- (d) All players drop out with equal probability: Here $\gamma_{i,k} = 1/s^2$ for all i and k. The resulting solution is different from the previous ones (thus, it is neither the Shapley value nor the equal split solution). However, for large n, it is easy to see that it is close to the equal split solution of (b) (a minor boundedness condition is needed here).
- (e) Unequal probabilities of being the proposer and of dropping out, and only the proposer drops out (Gomes [1991]³³): Here $\beta_k = \gamma_{k,k}$ and $\gamma_{i,k} = 0$ for $i \neq k$. If each player $i \in N$ has his own probability w_i of being chosen the proposer (these are updated as the game proceeds by conditioning on the set of active players; i.e., $\sigma_i(S) = w_i / \sum_{j \in S} w_j$ for all S) and his own survival probability ρ_i (independent of S), then the solution resulting from (4) is precisely the weighted Shapley [1953a] value relative to the weights' vector $(w_i(1-\rho_i))_{i \in N}$ (see also Kalai-Samet [1985] and Hart--Mas-Colell [1989]).

 $^{^{32}}$ This case has been studied by Nir Dagan; he obtained the characterization of the solution directly, without using Proposition 9.

Again, the characterization of the solution in this case has been obtained by Armando Gomes directly.

Proposition 9 enables us to characterize which of these bargaining procedures lead to the Shapley value.

Corollary: The SP equilibrium payoffs coincide with the Shapley value for all TU-games if and only if the bargaining procedure satisfies $\beta_k(S) = \gamma_{k,k}(S) = 1/|S| \text{ and } \gamma_{i,k}(S) = 0 \text{ when } i \neq k, \text{ for all } k \in S \subset N \ .$

Proof: Applying (4) recursively yields a_N^i as an average of terms of the form $v(S)-v(S\setminus k)$, for various S and $k\in S$, possibly distinct from i. To obtain the Shapley value, only the marginal contributions of i can matter, therefore $\gamma_{i,k}=0$ whenever $i\neq k$. The equality of the β_k 's is implied by symmetry.

Recall the discussion of Section III on the axioms of the Shapley value. All the bargaining procedures of this section clearly lead to solutions that satisfy the efficiency and the linearity axioms. The Corollary says that to obtain the Shapley value one needs, first, that only proposers (but not responders) may drop out; and second, that the probabilities $\sigma_i(1-\rho_i)$ of dropping out should be equalized across the players. The first condition is related to the null player axiom³⁴, and the second to the symmetry axiom.

If a player other than the proposer may drop out after rejection, then a null player, when he is the proposer, has bargaining power. Indeed, it is the proposer that essentially gets the marginal contribution of the dropped out player.

Proof of Proposition 9: The line of proof parallels that of Proposition 7, and we will not repeat the arguments here. The recursion proceeds as follows: A proposer $i \in S$ proposes to each other player j in $S \setminus i$ the expected payoff of next round, namely

$$a_{S,i}^{j} = \rho_{i} a_{S}^{j} + \sum_{k \in S} \tau_{k|i} a_{S \setminus k}^{j}$$

(where for convenience we define $a_{S\setminus j}^j$ as 0; also, recall that all the probabilities may depend on S). The proposer then takes all the surplus (so the total is v(S)), namely

$$a_{S,i}^{i} = \rho_{i} a_{S}^{i} + \sum_{k \in S} \tau_{k|i} [a_{S \setminus k}^{i} + v(S) - v(S \setminus k)]$$

(recall that the coordinates of a_S add up to at most v(S), and those of $a_{S\setminus k}$ to $v(S\setminus k)$, which is at most v(S) by the monotonicity assumption (A.3)). Fix i in S. Taking expectation of $a_{S,j}^i$ over j (with probabilities σ_j), we obtain

$$a_{S}^{i} = \sum_{j \in S} \sigma_{j} \rho_{j} a_{S}^{i} + \sum_{j \in S} \sum_{k \in S} \sigma_{j} \tau_{k \mid j} a_{S \setminus k}^{i} + \sum_{k \in S} \sigma_{i} \tau_{k \mid i} [v(S) - v(S \setminus k)].$$

Moving the a_S^i term to the left-hand side, dividing throughout by $1-\rho=1-\sum_j\sigma_j\rho_j=\sum_j\sigma_j(1-\rho_j)$, and finally changing the order of summation in the middle term yields (4). \square

Consider now the NTU-case. It can be easily checked that formula (4) of Proposition 9 may be extended to hyperplane games (in the same way that Proposition 7 extends Theorem 2) and, when all the $\rho_i(S)$ approach 1, also to the general NTU case. One just needs to replace the term $\gamma_{i,k}(S)$ [v(S)-v(S\k)] in formula (4) by $\gamma_{i,k}(S)$ [$\sum_{j\in S} \lambda_S^j a_S^j - \sum_{j\in S\setminus k} \lambda_S^j a_{S\setminus k}^j] / \lambda_S^i$, where $\lambda_S \in \mathbb{R}_{++}^S$ is the unique supporting normal to the boundary of V(S) at a_S . It is easily seen that this is just equation (c) of Proposition 4. Recalling the previous Corollary, one obtains the following important implication.

If the bargaining procedure yields the Shapley value in the TU-case, then it yields the consistent value in the NTU-case.

So, from the non-cooperative viewpoint espoused in this paper, the consistent value is the appropriate NTU generalization of the Shapley TU-value.

Finally, we note that one could also consider models where, after rejection, each player has a certain probability of dropping out, independently of the other players. If these probabilities are small and of comparable size, then the terms corresponding to more than one player dropping out become relatively negligible, and we are back, essentially, to models where only one player may drop out.

VII. Interpretation and Discussion

In this section we discuss some interpretative issues concerning our setup, both in terms of the coalitional form and of the non-cooperative bargaining game used. Plainly, the two are strongly interconnected. The particular conflict situation that underlies the coalitional form being studied is an essential factor in judging the appropriateness of any bargaining procedure. In order to fix ideas, it may be useful to consider some examples. We will do this within the familiar framework of economic models, but it should be clear to the reader how to interpret them more generally.

Suppose that we have a freely transferable consumption good and that utility functions depend only on this good and are linear in it (that is, we are in a TU setup). There is also a production function f(x) for the consumption good, where x is a vector of inputs (which yield no utility). Every member i of society owns a vector of inputs ω^i . As a first example we assume that the "technology" f(x) is freely available and replicable, i.e. every individual or group can use it without limit or congestion. Then $v(S) = f(\sum_{i \in S} \omega^i)$ is the amount of utility that a group of people S could get "by themselves". This can mean what they get if they separate and form their own economy or, indistinctly, what they get if they were alone in the world (i.e., if the rest of people had separated, or did not show up). The bargaining procedure can be applied to this economy without difficulty and it yields a perfectly sensible outcome: the Shapley value.

non-cooperative bargaining game (or at least its stationary Our equilibria) does not really allow for strategic coalition formation. When applied to the economy in the previous example, where groups of agents can actually separate (and still have access to the technology), this may be seen as restrictive. 35 We are thus led to consider the following variation of the example. Suppose now that the technology is not replicable: the function f(x)captures the productivity not only of the vector x of resources, but also of some underlying, indivisible, jointly owned resource. There is then a distinction between what a group S can get if they are the members of society (and, therefore, control the common resource), which is $f(\sum_{i \in S} \omega^i)$, and what they would get if they had left society, a lower amount. This is a model where, because separating coalitions cannot take the common resource with them, their strategic significance is much diminished. Interpreting v(S) as $f(\sum_{i \in S} \omega^i)$ we have, in consequence, an instance that our non-cooperative game fits very naturally. In particular, it allows us to exploit the distinction we have made between the level of utility r^{i} (which is what agent i gets if he is the only one left in society, hence in full control of the joint resource; in this case, $r^1 = f(\omega^1)$) and the level 0, which is what player i gets if he separates (what really matters is that he gets a level of utility of at most r¹). The current example requires this distinction, which our model allows.

Allowing for strategic coalition formation leads, on the cooperative side, to domination and core related ideas, and, on the non-cooperative side, to the models of Harsanyi [1974], Selten [1981], Baron--Ferejohn [1987], Chatterjee--Dutta--Ray--Sengupta [1993], Bennett [1991], Perry--Reny [1994], Okada [1991], and others.

To elaborate further we emphasize that from the standpoint of our bargaining procedure the number v(S) (or the set V(S) in the NTU case) is the utility accruing to the members of S if they are the remaining players at the end of the game. Accordingly, r^i is the payoff if only player i is left. As indicated, our formal model allows for the utility of a player that leaves the game to be less than r^i (it is this amount that we have normalized to be zero). As we have seen, the scope of possible applications is thus increased. We should add that we could go further and specify also the utility of groups of players leaving the game. We do not do so, however, because in our bargaining procedure players leave the game, if at all, one at a time. Also, we are assuming that the "coalition" of expelled players does not form; the utility of a dropped-out agent is fixed at zero when he leaves the game.

A limit instance of the last example is when there are no individual resources, but only the jointly owned, indivisible, resource. Then, normalizing, the coalitional form has v(S)=1 for all non-empty S, i.e., v(S)=1 is the utility that S gets if S has the resource; the utility of not having the resource is zero. Our mechanism applies well to this (monotonic but not supperadditive) situation. It may be useful to offer a brief discussion. The unique SP equilibrium of the game gives 1/n to every player. If ρ is small, say $\rho=0$, then this is true only in expectation. In fact, being selected a proposer is "bad news" since here a proposer has no bargaining power. If he demands anything for himself he will be rejected for sure: some other player must be getting a proposal of less than 1/(n-1), the expected payoff in the continuation for a player that rejects. So the

proposer can only get 0. If however ρ is large, i.e., close to 1, then we know that (at the SP equilibrium) proposals depend very little on who is chosen to be the proposer: the remaining players will accept an offer slightly above 1/n (hence leaving almost 1/n to the proposer). What happens is that a respondent takes into account that with high probability the same situation will repeat, and in that case he may be chosen to the "hot seat" of proposer.

In the context of the class of examples considered up to now, the meaning of the expression "player i is dropped out" is clear: it means that the player loses the benefit of the use of the joint resources, while the remaining players lose the benefit of the use of his resources. We are referring to "resources" in order have a specific model in front of us. But there can be others. In fact, in all generality, we would dispense with the coalitional form and simply have a strategic or normal form supplemented by a specification of commitment procedures to joint play in the normal form. The bargaining game will then be concerned with the determination of the agreed upon joint play.

Note also that the possibility of "dropping out" gives power and imposes servitude to a proposer. As for the power, we could imagine that, when chosen as proposer, a player is automatically committed to a threat of a random withdrawal (perhaps destruction) of his own resources.³⁶ As for the servitude, the cost of withdrawal does not need to be viewed as a physical disappearance,

Hence there is no strategic choice of threats here. See Myerson [1991], for a similar point in relation to the Nash bargaining solution.

but merely as a loss of veto power. We could put the matter as follows. We deal with bargaining situations where in principle the unanimous consent of all the participants is required. Yet we do not want individual players to hold out on an agreement forever. Ours is a simple way to accomplish this effect: when a player is called upon to be a proposer he loses his current veto power -- he must make a proposal. Of course, he can exercise veto power indirectly by formulating a proposal that will be rejected, but then he runs the risk of losing his veto power forever: he has had "his chance" and been "frivolous" about it (in the model of this paper it is important that losing veto power be costly to an individual; i.e., $0 \le r^i$). In other words, consent can be given either actively and explicitly or by "getting out of the way". The latter will typically have collective and individual costs.

We conclude by suggesting a number of issues that deserve further investigation: (a) Exploring additional non-cooperative bargaining games — beyond those of Section VI; in particular, allowing the possibility of strategic coalition formation. (b) Investigating the relation between the consistent value and the Walrasian equilibria in large economies. (c) Studying non-cooperative solution concepts less strict that SP equilibrium; for example, non-stationary perfect equilibria, 38 or limits of perfect

 $^{^{37}}$ See Hart--Mas-Colell [1995] for an example in a related context (the Harsanyi NTU-value), where a lack of quasilinearity (that is, a presence of strict curvature in $\partial V(S)$) leads to a breakdown of the Value equivalence principle.

³⁸ See Krishna--Serrano [1993] for the TU-case.

equilibria of finite horizon games (as the length of the game increases).³⁹ (d) Providing axiomatizations for the consistent value.⁴⁰

REFERENCES

- Baron, D. P. and J. A. Ferejohn [1987], Bargaining and Agenda Formation in Legislatures, *American Economic Review 77* (Papers and Proceedings), 303-309.
- Bennett, E. [1991], Three Approaches to Bargaining in NTU Games, in R. Selten (ed.), Game Equilibrium Models III: Strategic Bargaining, Springer-Verlag, 48-69.
- Binmore, K. G. [1987], Nash Bargaining Theory II, in K. G. Binmore and P. Dasgupta (eds.), The Economics of Bargaining, Blackwell, 61-76.
- Chatterjee, K., B. Dutta, D. Ray and K. Sengupta [1993], A Non-Cooperative Theory of Coalitional Bargaining, Review of Economic Studies 60, 463-477.
- Chae, S. C. and J.-A. Yang [1988], The Unique Perfect Equilibrium of an N-Person Bargaining Game, Economic Letters 28, 221-223.
- Cheng, H. [1996], Values of Perfectly Competitive Economies, in R. J. Aumann and S. Hart (eds.), Handbook of Game Theory with Economic Applications, vol. III, Elsevier--North-Holland (forthcoming).
- Dagan, N. [1992], private communication.

³⁹ Some interesting preliminary results in this direction have been obtained by Gomes [1991].

See Hart [1994] for an axiomatization in the hyperplane case.

- Gale, D. [1986], Bargaining and Competition, Part I: Characterization, Econometrica 54, 785-806.
- Gomes, A. [1991], private communication.
- Gul, F. [1989], Bargaining Foundations of Shapley Value, *Econometrica* 57, 81-95.
- Harsanyi, J. C. [1963], A Simplified Bargaining Model for the *n*-Person Cooperative Game, *International Economic Review* 4, 194-220.
- Harsanyi, J. C. [1974], An Equilibrium Point Interpretation of Stable Sets and a Proposed Alternative Definition, Management Science 20, 1472-1495.
- Harsanyi, J. C. [1981], The Shapley Value and the Risk Dominance Solutions of Two Bargaining Models for Characteristic-Function Games, in R. J. Aumann et. al. (eds.), Essays in Game Theory and Mathematical Economics, Bibliographisches Institut Mannheim, 43-68.
- Hart, O. and J. Moore [1990], Property Rights and the Nature of the Firm,

 Journal of Political Economy 98, 1119-1157.
- Hart, S. [1994], On Prize Games, in N. Megiddo (ed.), Essays in Game Theory, Springer-Verlag, 111-121.
- Hart, S. and A. Mas-Colell [1989], Potential, Value and Consistency, Econometrica 57, 589-614.
- Hart, S. and A. Mas-Colell [1995], Harsanyi Values of Large Economies: Non-Equivalence to Competitive Equilibria, *Games and Economic Behavior*, forthcoming.
- Jun, B. H. [1989], Non-Cooperative Bargaining and Union Formation, Review of Economic Studies 56, 59-76.

- Kalai, E. and D. Samet [1985], Monotonic Solutions to General Cooperative Games, *Econometrica* 53, 307-327.
- Kaneko, M. [1988], Conventionally Stable Sets in Noncooperative Games: von Neumann-Morgenstern Stable Sets in Small Cooperative Games, mimeographed.
- Krishna, V. and R. Serrano [1990], Multilateral Bargaining (revised 1993),
 Working Paper 93-23, Brown University.
- Krishna, V. and R. Serrano [1995], Perfect Equilibria of n-Person Non-Cooperative Bargaining, International Journal of Game Theory (forthcoming).
- Maschler, M. and G. Owen [1989], The Consistent Shapley Value for Hyperplane Games, International Journal of Game Theory 18, 389-407.
- Maschler, M. and G. Owen [1992], The Consistent Shapley Value for Games without Side Payments, in R. Selten (ed.), Rational Interaction, Springer-Verlag, 5-12.
- Mas-Colell, A. [1988], Algunos Comentarios sobre la Teoria Cooperativa de los Juegos, Cuadernos Economicos 40, 143-161.
- Maskin, E. and J. Tirole [1988], A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles, *Econometrica* 56, 571-600.
- Myerson, R. B. [1980], Conference Structures and Fair Allocation Rules,

 International Journal of Game Theory 9, 169-182.
- Myerson, R. B. [1991], Game Theory, Harvard University Press.
- Nash, J. [1950], The Bargaining Problem, Econometrica 18, 155-162.

- Okada, A. [1991], Noncooperative Bargaining and the Core of an n-Person Characteristic Function Game, Discussion Paper 336, Kyoto Institute of Economics.
- Osborne, M. and A. Rubinstein [1990], Bargaining and Markets, Academic Press.
- Owen, G. [1972], Values of Games without Side Payments, *International Journal* of Game Theory 1, 95-109.
- Owen, G. [1994], The Non-Consistency and Non-Uniqueness of the Inductive Value, in N. Megiddo (ed.), Essays in Game Theory, Springer-Verlag, 155-162.
- Perry, M. and P. J. Reny [1994], A Noncooperative View of Coalition Formation and the Core, *Econometrica* 62, 795-817.
- Roth, A. E. [1980], Values for Games without Side Payments: Some Difficulties with Current Concepts, *Econometrica* 48, 457-465.
- Rubinstein, A. [1982], Perfect Equilibrium in a Bargaining Model, *Econometrica* 50, 97-109.
- Rubinstein, A. and A. Wolinsky [1985], Equilibrium in a Market with Sequential Bargaining, *Econometrica* 53, 1133-1150.
- Selten, R. [1981], A Noncooperative Model of Characteristic Function

 Bargaining, in R. J. Aumann et. al. (eds.), Essays in Game Theory and

 Mathematical Economics, Bibliographisches Institut Mannheim, 131-151.
- Shapley, L. S. [1953a], Additive and Non-Additive Set Functions, Ph.D. Thesis, Princeton University.
- Shapley, L. S. [1953b], A Value for n-Person Games , in H. W. Kuhn and A. W. Tucker (eds.), Contributions to the Theory of Games II (Annals of Mathematics Studies 28), Princeton University Press, 307-317.

- Shapley, L. S. [1964], Values of Large Games VII: A General Exchange Economy with Money, RM-4248-PR, The Rand Co., mimeographed.
- Shapley, L. S. [1969], Utility Comparison and the Theory of Games, in *La Décision*, Editions du CNRS, Paris, 251-263.
- Thomson, W. and T. Lensberg [1989], Axiomatic Theory of Bargaining with a Variable Number of Agents, Cambridge University Press.
- Winter, E. [1994], The Demand Commitment Bargaining and Snowballing Cooperation, *Economic Theory* 4, 255-273.

WORKING PAPERS LIST

1. Albert Marcet and Ramon Marimon

Communication, Commitment and Growth. (June 1991) [Published in Journal of Economic Theory Vol. 58, no. 2, (December 1992)]

2. Antoni Bosch

Economies of Scale, Location, Age and Sex Discrimination in Household Demand. (June 1991) [Published in European Economic Review 35, (1991) 1589-1595]

Albert Satorra

Asymptotic Robust Inferences in the Analysis of Mean and Covariance Structures. (June 1991) [Published in Sociological Methodology (1992), pp. 249-278, P.V. Marsden Edt. Basil Blackwell: Oxford & Cambridge, MA]

4. Javier Andrés and Jaume Garcia

Wage Determination in the Spanish Industry. (June 1991) [Published as "Factores determinantes de los salarios: evidencia para la industria española" in J.J. Dolado et al. (eds.) La industria y el comportamiento de las empresas españolas (Ensayos en homenaje a Gonzalo Mato), Chapter 6, pp. 171-196, Alianza Economia]

5. Albert Marcet

Solving Non-Linear Stochastic Models by Parameterizing Expectations: An Application to Asset Pricing with Production. (July 1991)

6. Albert Marcet

Simulation Analysis of Dynamic Stochastic Models: Applications to Theory and Estimation. (November 1991), 2d. version (March 1993) [Published in Advances in Econometrics invited symposia of the Sixth World Congress of the Econometric Society (Eds. JJ. Laffont i C.A. Sims). Cambridge University Press (1994)]

7. Xavier Calsamiglia and Alan Kirman

A Unique Informationally Efficient and Decentralized Mechanism with Fair Outcomes. (November 1991) [Published in Econometrica, vol. 61, 5, pp. 1147-1172 (1993)]

8. Albert Satorra

The Variance Matrix of Sample Second-order Moments in Multivariate Linear Relations. (January 1992) [Published in Statistics & Probability Letters Vol. 15, no. 1, (1992), pp. 63-69]

9. Teresa Garcia-Milà and Therese J. McGuire

Industrial Mix as a Factor in the Growth and Variability of States' Economies. (January 1992) [Forthcoming in Regional Science and Urban Economics]

Walter Garcia-Fontes and Hugo Hopenhayn

Entry Restrictions and the Determination of Quality. (February 1992)

11. Guillem López and Adam Robert Wagstaff

Indicadores de Eficiencia en el Sector Hospitalario. (March 1992) [Published in Moneda y Crédito Vol. 196]

12. Daniel Serra and Charles ReVelle

The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part I (April 1992) [Published in Location Science, Vol. 1, no. 4 (1993)]

13. Daniel Serra and Charles ReVelle

The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part II: Heuristic Solution Methods. (April 1992) [Published in Location Science, Vol. 2, no. 2 (1994)]

14. Juan Pablo Nicolini

Ruling out Speculative Hyperinflations: a Game Theoretic Approach. (April 1992)

15. Albert Marcet and Thomas J. Sargent

Speed of Convergence of Recursive Least Squares Learning with ARMA Perceptions. (May 1992) [Forthcoming in Learning and Rationality in Economics]

16. Albert Satorra

Multi-Sample Analysis of Moment-Structures: Asymptotic Validity of Inferences Based on Second-Order Moments. (June 1992) [Published in Statistical Modelling and Latent Variables Elsevier, North Holland. K. Haagen, D.J. Bartholomew and M. Deistler (eds.), pp. 283-298.]

Special issue Vernon L. Smith

Experimental Methods in Economics. (June 1992)

17. Albert Marcet and David A. Marshall

Convergence of Approximate Model Solutions to Rational Expectation Equilibria Using the Method of Parameterized Expectations.

18. M. Antònia Monés, Rafael Salas and Eva Ventura

Consumption, Real after Tax Interest Rates and Income Innovations. A Panel Data Analysis. (December 1992)

19. Hugo A. Hopenhayn and Ingrid M. Werner

Information, Liquidity and Asset Trading in a Random Matching Game. (February 1993)

20. Daniel Serra

The Coherent Covering Location Problem. (February 1993) [Forthcoming in Papers in Regional Science]

Ramon Marimon, Stephen E. Spear and Shyam Sunder 21.

Expectationally-driven Market Volatility: An Experimental Study. (March 1993) [Forthcoming in Journal of Economic Theory]

Giorgia Giovannetti, Albert Marcet and Ramon Marimon 22.

Growth, Capital Flows and Enforcement Constaints: The Case of Africa. (March 1993) [Published in European Economic Review 37, pp. 418-425 (1993)]

23. Ramon Marimon

Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. (March 1993) [Published in European Economic Review 37 (1993)]

Ramon Marimon and Ellen McGrattan 24.

On Adaptive Learning in Strategic Games. (March 1993) [Forthcoming in A. Kirman and M. Salmon eds. "Learning and Rationality in Economics" Basil Blackwell]

Ramon Marimon and Shyam Sunder 25.

Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence. (March 1993) [Forthcoming in Econometrica]

Jaume Garcia and José M. Labeaga 26.

A Cross-Section Model with Zeros: an Application to the Demand for Tobacco. (March 1993)

27. Xavier Freixas

Short Term Credit Versus Account Receivable Financing. (March 1993)

Massimo Motta and George Norman 28.

Does Economic Integration cause Foreign Direct Investment? (March 1993) [Published in Working Paper University of Edinburgh 1993:1]

29. Jeffrey Prisbrey

An Experimental Analysis of Two-Person Reciprocity Games. (February 1993) [Published in Social Science Working Paper 787 (November 1992)]

Hugo A. Hopenhayn and Maria E. Muniagurria 30.

Policy Variability and Economic Growth. (February 1993)

Eva Ventura Colera 31.

A Note on Measurement Error and Euler Equations: an Alternative to Log-Linear Approximations. (March 1993) [Published in Economics Letters, 45, pp. 305-308 (1994)]

Rafael Crespí i Cladera 32.

Protecciones Anti-Opa y Concentración de la Propiedad: el Poder de Voto. (March 1993)

33. Hugo A. Hopenhayn

The Shakeout. (April 1993)

34. Walter Garcia-Fontes

Price Competition in Segmented Industries. (April 1993)

35. Albert Satorra i Brucart

On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models. (February 1993) [Published in Econometric Theory, 10, pp. 867-883]

Teresa Garcia-Milà, Therese J. McGuire and Robert H. Porter 36.

The Effect of Public Capital in State-Level Production Functions Reconsidered. (February 1993)

Ramon Marimon and Shyam Sunder 37.

Expectations and Learning Under Alternative Monetary Regimes: an Experimental Approach. (May 1993)

José M. Labeaga and Angel López 38.

Tax Simulations for Spain with a Flexible Demand System. (May 1993)

39. Daniel Serra and Charles ReVelle

Market Capture by Two Competitors: The Pre-Emptive Location Problem. (May 1993) [Published in Journal of Regional Science, Vol. 34, no.4 (1994)]

Xavier Cuadras-Morató 40.

Commodity Money in the Presence of Goods of Heterogenous Quality. (July 1993) [Published in Economic Theory 4 (1994)]

M. Antònia Monés and Eva Ventura 41.

Saving Decisions and Fiscal Incentives: A Spanish Panel Based Analysis. (July 1993)

Wouter J. den Haan and Albert Marcet 42.

Accuracy in Simulations. (September 1993) [Published in Review of Economic Studies, (1994)]

43. Jordi Galí

Local Externalities, Convex Adjustment Costs and Sunspot Equilibria. (September 1993) [Forthcoming in Journal of Economic Theory]

Jordi Galí
 Monopolistic Competition, Endogenous Markups, and Growth. (September 1993) [Forthcoming in European Economic Review]
 Jordi Galí

Monopolistic Competition, Business Cycles, and the Composition of Aggregate Demand. (October 1993) [Forthcoming in *Journal of Economic Theory*]

46. Oriol Amat

The Relationship between Tax Regulations and Financial Accounting: a Comparison of Germany, Spain and the United Kingdom. (November 1993) [Forthcoming in European Management Journal]

47. Diego Rodríguez and Dimitri Vayanos

Decentralization and the Management of Competition. (November 1993)

48. Diego Rodríguez and Thomas M. Stoker

A Regression Test of Semiparametric Index Model Specification. (November 1993)

Oriol Amat and John Blake

Control of the Costs of Quality Management: a Review or Current Practice in Spain. (November 1993)

50. Jeffrey E. Prisbrey

A Bounded Rationality, Evolutionary Model for Behavior in Two Person Reciprocity Games. (November 1993)

51. Lisa Beth Tilis

Economic Applications of Genetic Algorithms as a Markov Process. (November 1993)

52. Ángel López

The Comand for Private Transport in Spain: A Microeconometric Approach. (December 1993)

53. Ángel López

An Assessment of the Encuesta Continua de Presupuestos Familiares (1985-89) as a Source of Information for Applied Reseach. (December 1993)

54. Antonio Cabrales

Stochastic Replicator Dynamics. (December 1993)

55. Antonio Cabrales and Takeo Hoshi

Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics. (February 1993, Revised: June 1993)

56. Juan Pablo Nicolini

More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

57. Lisa B. Tilis

Income Distribution and Growth: A Re-examination. (December 1993)

58. José María Marín Vigueras and Shinichi Suda

A Model of Financial Markets with Default and The Role of "Ex-ante" Redundant Assets. (January 1994)

59. Angel de la Fuente and José María Marín Vigueras

Innovation, "Bank" Monitoring and Endogenous Financial Development. (January 1994)

60. Jordi Galí

Expectations-Driven Spatial Fluctuations. (January 1994)

61. Josep M. Argilés

Survey on Commercial and Economic Collaboration Between Companies in the EEC and Former Eastern Bloc Countries. (February 1994)

62. German Rojas

Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in Effects and Stabilization Policy. (September 1993)

63. Irasema Alonso

Patterns of Exchange, Fiat Money, and the Welfare Costs of Inflation. (September 1993)

64. Rohit Rahi

Adverse Selection and Security Design. (February 1994)

65. Jordi Galí and Fabrizio Zilibotti

Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

66. Jordi Galí and Richard Clarida

Sources of Real Exchage Rate Fluctuations: How Important are Nominal Shocks?. (October 1993, Revised: January 1994) [Forthcoming in Carnegie-Rochester Conference in Public Policy]

67. John Ireland

A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation on Case Counts. (February 1994)

68. John Ireland

How Products' Case Volumes Influence Supermarket Shelf Space Allocations and Profits. (February 1994)

69. Fabrizio Zilibotti

Foreign Investments, Enforcement Constraints and Human Capital Accumulation. (February 1994)

70. Vladimir Marianov and Daniel Serra

Probabilistic Maximal Covering Location Models for Congested Systems. (March 1994)

71. Giorgia Giovannetti.

Import Pricing, Domestic Pricing and Market Structure. (August 1993, Revised: January 1994)

72. Raffaela Giordano.

A Model of Inflation and Reputation with Wage Bargaining. (November 1992, Revised March 1994)

73. Jaume Puig i Junoy.

Aspectos Macroeconómicos del Gasto Sanitario en el Proceso de Convergencia Europea. (Enero 1994)

74. Daniel Serra, Samuel Ratick and Charles ReVelle.

The Maximum Capture Problem with Uncertainty (March 1994) [Forthcoming in Environment and Planning B]

75. Oriol Amat, John Blake and Jack Dowds.

Issues in the Use of the Cash Flow Statement-Experience in some Other Countries (March 1994)

76. Albert Marcet and David A. Marshall.

Solving Nonlinear Rational Expectations Models by Parameterized Expectations: Convergence to Stationary Solutions (March 1994)

77. Xavier Sala-i-Martin.

Lecture Notes on Economic Growth (I): Introduction to the Literature and Neoclassical Models (May 1994)

78. Xavier Sala-i-Martin.

Lecture Notes on Economic Growth (II): Five Prototype Models of Endogenous Growth (May 1994)

79. Xavier Sala-i-Martin.

Cross-Sectional Regressions and the Empirics of Economic Growth (May 1994)

80. Xavier Cuadras-Morató.

Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

81. Esther Martinez García.

Progresividad y Gastos Fiscales en la Imposición Personal sobre la Renta (Mayo 1994)

82. Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin.

Capital Mobility in Neoclassical Models of Growth (May 1994)

83. Sergi Jiménez-Martin.

The Wage Setting Process in Spain. Is it Really only about Wages? (April 1993, Revised: May 1994)

84. Robert J. Barro and Xavier Sala-i-Martin.

Quality Improvements in Models of Growth (June 1994)

85. Francesco Drudi and Raffaela Giordano.

Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility (February 1994)

86. Christian Helmenstein and Yury Yegorov.

The Dynamics of Migration in the Presence of Chains (June 1994)

87. Walter García-Fontes and Massimo Motta.

Quality of Professional Services under Price Floors. (June 1994)

88. Jose M. Bailen.

Basic Research, Product Innovation, and Growth. (September 1994)

89. Oriol Amat and John Blake and Julia Clarke.

Bank Financial Analyst's Response to Lease Capitalization in Spain (September 1994) [Forthcoming in International Journal of Accounting.]

90. John Blake and Oriol Amat and Julia Clarke.

Management's Response to Finance Lease Capitalization in Spain (September 1994)

91. Antoni Bosch and Shyam Sunder.

Tracking the Invisible Hand: Convergence of Double Auctions to Competitive Equilibrium. (July 1994)

92. Sergi Jiménez-Martin.

The Wage Effect of an Indexation Clause: Evidence from Spanish Manufacturing Firms. (September 1994)

93. Albert Carreras and Xavier Tafunell.

National Enterprise. Spanish Big Manufacturing Firms (1917-1990), between State and Market (September 1994)

94. Ramon Faulí-Oller and Massimo Motta.

Why do Owners let their Managers Pay too much for their Acquisitions? (October 1994)

95. Marc Sáez Zafra and Jorge V. Pérez-Rodríguez. Modelos Autorregresivos para la Varianza Condicionada Heteroscedástica (ARCH) (October 1994) 96. Daniel Serra and Charles ReVelle. Competitive Location in Discrete Space (November 1994) [Forthcoming in Zvi Drezner (ed.): Facility Location: a Survey of Applications and Methods. Springer-Verlag New York. 97. Alfonso Gambardella and Walter García-Fontes. Regional Linkages through European Research Funding (October 1994) 98. Daron Acemoglu and Fabrizio Zilibotti. Was Prometheus Unbound by Chance? Risk, Diversification and Growth (November 1994) 99. Price Formation and Order Placement Strategies in a Dynamic Order Driven Market (June 1994) Ramon Marimon and Fabrizio Zilibotti. 100. 'Actual' versus 'Virtual' Employment in Europe: Why is there Less Employment in Spain? (December 1994) 101. María Sáez Martí. Are Large Windows Efficient? Evolution of Learning Rules in a Bargaining Model (December 1994) 102. María Sáez Martí. An Evolutionary Model of Development of a Credit Market (December 1994) 103. Walter García-Fontes and Ruben Tansini and Marcel Vaillant. Cross-Industry Entry: the Case of a Small Developing Economy (December 1994) 104. Xavier Sala-i-Martin. Regional Cohesion: Evidence and Theories of Regional Growth and Convergence (October 1994) 105. Antoni Bosch-Domènech and Joaquim Silvestre. Credit Constraints in General Equilibrium: Experimental Results (December 1994) 106. Casey B. Mulligan and Xavier Sala-i-Martin. A Labor-Income-Based Measure of the Value of Human Capital: an Application to the States of the United States. (December 1994) 107. José M. Bailén and Luis A. Rivera-Bátiz. Human Capital, Heterogeneous Agents and Technological Change (March 1995) 108. Xavier Sala-i-Martin. A Positive Theory of Social Security (February 1995) 109. J. S. Marron and Frederic Udina. Interactive Local Bandwidth Choice (February 1995) 110. Marc Sáez and Robert M. Kunst. ARCH Patterns in Cointegrated Systems (March 1995) Xavier Cuadras-Morató and Joan R. Rosés. Bills of Exchange as Money: Sources of Monetary Supply during the Industrialization in Catalonia (1844-74) (April 1995) 112. Casey B. Mulligan and Xavier Sala-i-Martin. Measuring Aggregate Human Capital (January 1995) 113. Does Detrending Matter for the Determination of the Reference Cycle and the Selection of Turning Points? (March 1995)

114.

Sergiu Hart and Andreu Mas-Colell. Bargaining and Value (February 1995)