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Several estimators of the expectation, median and mode of the lognormal distribution are de-
rived. They have the form exp(�̂ + b�̂2), where �̂ and �̂2 are the usual estimators of the mean
and variance of the underlying normal distribution, and b is a suitable constant or function of
�̂2. The estimators aim to be approximately unbiased, efficient, or to have a minimax prop-
erty in the class of estimators we consider. The small-sample properties of these estimators
are assessed by simulations and, when possible, analytically. Some of these estimators of the
expectation are far more efficient than the maximum likelihood or the minimum-variance
unbiased estimator, even for substantial sample sizes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The lognormal distribution is used in a wide range of applications, when the multiplicative scale is appropriate and the
log-transformation removes the skew and brings about symmetry of the data distribution (Limpert et al., 2001). Normality is the
preferred distributional assumption inmany contexts, and logarithm is often the first transformation that an analyst considers to
promote it. Linearmodels are convenient to specify and all the relevantmoments are easy to calculate and operatewith on the log
scale. However, there are instances whenmoments, and the expectation in particular, are of interest on the original (exponential)
scale. For example, the lognormal distribution is frequently applied to variables in monetary units, such as companies' assets,
liabilities and profits, residential property prices (Zabel, 1999) and household income (Longford and Pittau, 2006). The population
mean of such a variable may be a much more relevant target for inference than the population mean of its logarithm. The sample
mean is a suitable estimator for large samples, when asymptotics provide a good approximation. In samples that are not large
enough, and especially when the underlying (normal-scale) variance is large, the sample mean is very inefficient. We explore
several alternatives and study their small-sample properties.

Finney (1941) derived the minimum-variance unbiased estimator of the expectation and variance of the lognormal distri-
bution, but it involves the evaluation of an infinite series; see Thöni (1969) for an application. Aitchison and Brown (1957) is
a comprehensive reference for the lognormal distribution; see also Crow and Shimizu (1988). Royston (2001) considers the
lognormal distribution as an alternative basis for survival analysis, claiming robustness and convenience. He fits a linear model
on the log scale, but implies that the prediction obtained on the log scale can be transformed back to the original scale straight-
forwardly. The confidence intervals can be, but the prediction as such cannot, because the transformation is highly nonlinear.
Toma (2003) derives estimators for the multivariate lognormal distribution, but her focus is on large-sample properties. Zhou
et al. (1997) study tests for comparing two lognormal samples, but consider only test statistics that resemble the t, which include
the likelihood ratio. We derive a closed-form estimator that is biased but is more efficient than Finney's estimator.

The expectation, median and mode of the lognormal distribution LN(�,�2), defined by exponentiation of the normal
distributionN(�,�2), are exp(� + 1

2�2), exp(�) and exp(� − �2), respectively. This motivates the general problem of estimating
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the quantity �(a)=exp(�+a�2), with a given constant a, by exploring the estimators of the form �̂(ba)=exp(�̂+ba�̂2). The naive
estimator �̂(a), such as exp(�̂+ 1

2 �̂2) for a= 1
2 , is biased and inefficient, and its bias correction is ineffective. We focus on efficient

estimation, but derive some results related to unbiased estimation to highlight that attempts at bias reduction and minimisation
of the mean squared error (MSE) lead to very different estimators.

In the next section,we seek estimators �̂(ba) or �̂(b̂a) that are unbiased, attain theminimumMSE andhave aminimax property.
The following sections describe simulations of these estimators. The paper is concluded by a discussion.

2. Estimation

Let X = (X1, . . . ,Xn)
� be a random sample from LN(�,�2). The sample mean �̂ = {log(X1) + · · · + log(Xn)}/n is unbiased and

efficient for �, with sampling variance var(�̂) = �2/n. However, these desirable properties are lost by nonlinear transformations;
exp(�̂) is unbiased and efficient for neither exp(�) nor E(X) = exp(� + 1

2�2). We have

E{exp(�̂)} = exp

(
� + �2

2n

)
,

var{exp(�̂)} = exp

(
2� + �2

n

){
exp

(
�2

n

)
− 1

}
.

We assume that there is an unbiased estimator �̂2 of �2, and that

k
�̂2

�2
∼ �2k ,

the �2 distribution with k degrees of freedom, defined by the density

f (x) = 1

�
(
1
2
k
)(1

2

)(k/2)
x(k/2)−1 exp

(
− x
2

)

on (0,+∞). In the introduced setting, k is equal to n − 1, but we consider generalisations in which more than one degree of
freedom is lost. For evaluating the bias and MSE of estimators of the form �̂(b) = exp(�̂ + b�̂2), we require expressions for the
expectation and variance of exp(b�̂2).

For a random variable Y with �2k distribution and scalar c < 1
2 ,

E{exp(cY)} = 1

�
(
1
2
k
)(1

2

)(k/2) ∫ +∞

0
x(k/2)−1 exp

{
− x
2
(1 − 2c)

}
dx

= (1 − 2c)−(k/2). (1)

For the variance we have the identity

var{exp(cY)} = E{exp(2cY)} − [E{exp(cY)}]2

= (1 − 4c)−(k/2) − (1 − 2c)−k, (2)

which holds as long as c < 1
4 ; otherwise the variance is not defined. Expressions for the expectation and variance of exp(b�̂2) are

obtained by substituting c = b�2/k in (1) and (2).

2.1. Approximately unbiased estimation

We seek first the constant b for which �̂(b) = exp(�̂ + b�̂2) is unbiased for �(a) = exp(� + a�2). As �̂ and �̂2 are independent,

E{�̂(b)} = exp

(
� + �2

2n

)(
k

k − 2b�2

)k/2
. (3)

Therefore �̂(b) is unbiased for �(a) when

k − 2b�2

k
= exp

{
−2�2

k

(
a − 1

2n

)}
,
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that is, for

b∗
a,ub = k

2�2

[
1 − exp

{
−2�2

k

(
a − 1

2n

)}]
. (4)

As b∗
a,ub depends on �2, we have to estimate it. Its naive estimator is denoted by b̂∗

a,ub. The dependence of b∗
a,ub on �2 is avoided

by the Taylor expansion, which yields the approximation

b†a,ub = a − 1
2n

. (5)

It can be interpreted as a multiplicative bias correction of the naive estimator exp(�̂) which has the expectation exp{�+�2/(2n)}.
For a = 1

2 it agrees with the linear term of the expansion of the function g(t) in the minimum-variance unbiased estimator

exp(�̂) g( 12 �̂2), derived by Finney (1941);

g(t) = 1 +
∞∑
h=1

(n − 1)2h−1th

h!nh

h−1∏
m=1

1
n + 2m − 1

,

with the convention that the product of no terms (for h = 1) is equal to unity. Unlike Finney's estimator, neither �̂(b̂∗
a,ub) nor

�̂(b†a,ub) are unbiased because the estimators b̂ are not linear in �̂2. Both estimators �̂ turn out to be very inefficient for all three

values of a that are of interest, 12 , 0, and −1.

2.2. Approximately minimum MSE

The sampling variance of �̂(b) is

var(�̂ + b�̂2) = E{exp(2�̂)}E{exp(2b�̂2)} − [E(�̂)E{exp(b�̂2)}]2

= exp

(
2� + 2�2

n

)(
k

k − 4b�2

)k/2
− exp

(
2� + �2

n

)(
k

k − 2b�2

)k
, (6)

and its bias for �(a) is

exp(�)

{
exp

(
�2

2n

)(
k

k − 2b�2

)k/2
− exp(a�2)

}
.

Hence the MSE of �̂(b) in estimating �(a) is

m(b; a) = exp(2�)

{
exp(2a�2) − 2 exp

(
a�2 + �2

2n

)(
k

k − 2b�2

)k/2
+ exp

(
2�2

n

)(
k

k − 4b�2

)k/2}
. (7)

The minimum of this function of b is found as the root of its derivative

�m
�b

= 2�2 exp(2�)

{
exp

(
2�2

n

)(
k

k − 4b�2

)(k/2)+1
− exp

(
a�2 + �2

2n

)(
k

k − 2b�2

)(k/2)+1
}
.

The solution is

b∗
a,ms = k

2�2
Da − 1
2Da − 1

, (8)

where

Da = exp

{
2�2

k + 2

(
a − 3

2n

)}
.

Finiteness of the MSE (b < 1
4k/�

2) implies the condition Da > 1
2 . Unlike in (5), the (linear) Taylor expansion of b∗

a,ms (or Da) does

not yield a radical simplification, and the resulting estimator �̂(b†a,ms) is very inefficient.
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If we managed to obtain b∗
a,ms, we would attain with �̂(b∗

a,ms) the so-called idealMSE

m(b∗
a,ms; a) = exp(2�)

{
exp

(
2�2

n

)
(2Da − 1)k/2 − 2 exp

(
�2

2n
+ a�2

)(
2Da − 1

Da

)k/2
+ exp(2a�2)

}
. (9)

It is the lower bound for the MSE in the class of estimators �̂(b) in which b is a constant. We regard m(b∗
a,ms; a) as a reference

against which we compare the MSEs of other (realisable) estimators of �(a). The estimator �̂(b̂∗
a,ms), obtained by estimating b∗

a,ms
naively, will turn out to be the most efficient of the estimators of �(a) that we study.

2.3. Minimax estimation

For coefficient b such that 0 < b < 1
4k/�

2, the variance var{�̂(b)} is an increasing function of �2. To see this, we differentiate the

expression in (6). Denote by A and B the terms in (6), so that var{�̂(b)} = A − B. Then

�var{�̂(b)}
��2

= 1
n
exp(2�)

{
2 exp

(
2�2

n

)(
k

k − 4b�2

)k/2
− exp

(
�2

n

)(
k

k − 2b�2

)k}

+ 2b exp(2�)

{
exp

(
2�2

n

)(
k

k − 4b�2

)(k/2)+1
− exp

(
�2

n

)(
k

k − 2b�2

)k+1
}

= 2
(
1
n

+ bk

k − 4b�2

)
A −

(
1
n

+ 2bk
k − 2b�2

)
B.

For b >0, the factors of A and B are both positive and their difference

1
n

+ 2bk
k − 4b�2

− 2bk
k − 2b�2

= 1
n

+ 4b2k�2

(k − 2b�2)(k − 4b�2)

is also positive. Therefore A>B>0 implies that the derivative is positive. The derivative is positive even at �2 =0, where it is equal
to (2A − B)/n. Therefore, the variance of �̂(b;�2d) is an increasing function of �2 even for some b in the left-hand neighbourhood
of zero. According to (8), b∗

a,ms >0 corresponds to a >3/(2n). For the median, b∗
0,ms is negative, but of the order −O(1/n).

One can expect that the MSE m(b, a) is an increasing function of �2 for any b >0 such that b < 1
4k/�

2. If we cannot find an
estimator that is (uniformly) efficient for all �2 >0, we might pay more attention to efficiency for greater values of �2, for
which more is at stake. This motivates the following approach to estimating �(a). Suppose we are certain (or very confident)
that �2 does not exceed a specified value �2

mx. Then we use the coefficient ba,mx for which the estimator �̂(ba,mx) is efficient
when �2 = �2

mx,

ba,mx = k

2�2
mx

Da,mx − 1
2Da,mx − 1

, (10)

as in (8),with implicitly definedDa,mx, and apply the estimator �̂(ba,mx). Rigourwould be enhanced bywriting ba,mx=ba,mx(�2
mx),

but that would make the notation cumbersome.
One might reasonably expect that the estimator �̂(ba,mx) based on a value �2

mx = �2
1 is more efficient for all �2 ∈ (0,�2

1] than

�̂(ba,mx) based on a value �2
2 >�2

1. That is, for a sharper (smaller) upper bound �2
mx we should be rewarded by uniformly more

efficient estimation, so long as this bound is justified. This conjecture is proved by differentiating theMSE of �̂(ba,mx) with respect
to �2

mx.
Directly from (7) we obtain the identity

m(ba,mx; a) = exp(2�)

⎡
⎣exp

(
2�2

n

){
1 − 2(Da,mx − 1)

2Da,mx − 1
�2

�2
mx

}−k/2

−2 exp

(
�2

2n
+ a�2

)(
1 − Da,mx − 1

2Da,mx − 1
�2

�2
mx

)−k/2

+ exp(2a�2)

⎤
⎦ . (11)
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Let Ca = log(Da,mx)/�2
mx, so that �Da,mx/��2

mx = CaDa,mx. For a >3/(2n), Ca >0. Then

�m(ba,mx; a)

��2
mx

= exp

(
2� + 2�2

n

)
k�2

�4
mx

{(2Da,mx − 1)(Da,mx − 1) − CaDa,mx�2
mx}

(2Da,mx − 1)2

×
⎡
⎣exp{�2

(
a − 3

2n

)}{
(2Da,mx − 1)�2

mx

(2Da,mx − 1)�2
mx − (Da,mx − 1)�2

}(k/2)+1

−
{

(2Da,mx − 1)�2
mx

(2Da,mx − 1)�2
mx − 2(Da,mx − 1)�2

}(k/2)+1
⎤
⎦ . (12)

The long fraction in the first row is positive because the inequality Da,mx − 1 >Ca�2
mx >0, obtained from the Taylor expansion of

Da,mx around �2
mx = 0, implies that

(2Da,mx − 1)(Da,mx − 1) − CaDa,mx�2
mx > (Da,mx − 1)2. (13)

The exponential in the second row is equal to D(k/2)+1
a , and so the sign of the expression in (12) is the same as the sign of

Da{(2Da,mx − 1)�2
mx − 2(Da,mx − 1)�2} − (2Da,mx − 1)�2

mx + (Da,mx − 1)�2

= (Da − 1)(2Da,mx − 1)�2
mx − (2Da − 1)(Da,mx − 1)�2

= {F(�2) − F(�2
mx)}(2Da − 1)(2Da,mx − 1)�2�2

mx,

where F(�2) = �−2(Da − 1)/(2Da − 1). The function F is decreasing, since

�F
��2

= DaCa

(2Da − 1)2
1
�2

− Da − 1
2Da − 1

1
�4

= − (Da − 1)(2Da − 1) − CaDa�2

(2Da − 1)2�4
< 0,

using the same argument as in (13). Therefore F(�2) > F(�2
mx) and (12) is positive, whenever �2 <�2

mx. This concludes the proof
that a smaller upper bound �2

mx results in a uniformlymore efficient estimator �̂(ba,mx), so long as b >0 and the bound is justified,
that is, �2 <�2

mx.
The relative bias of an estimator is defined as the ratio of its expectation and its target,

Brel(�̂) = E(�̂)
�(a)

.

For the minimax estimators with moderate or large k, log(Brel) can be approximated by a scalar multiple of the variance �2:

log{E(�̂)} − log{�(a)} = �2
(

1
2n

− a
)

− k
2
log

(
1 − �2

�2
mx

Da,mx − 1
2Da,mx − 1

)
,

and, since Da,mx does not depend on �2, the second term is well approximated by a scalar multiple of �2 when Da,mx is much
greater than 1

2 . The approximation is not very good when estimating the mode (a = −1).

3. Simulations

The simulations of the various estimators of �(a) for a = 1
2 , 0 and 1 described in this section are conducted for �2 ∈ (0, 10).

For orientation, a typical draw from LN(�, 10) is about exp(
√
10) .= 24 times greater or smaller than the median exp(�). The

densities of the distributions LN(0,�2) for variances �2 = 0.1, 0.5, 2.5 and 10 are plotted in Fig. 1. The right-hand tails of the
densities are cropped. Although the density of LN(0, 10) attains very small values for x >12, the interval (12,+∞) accounts
for over 20% of the distribution. The vertical axis is also cropped; the density of LN(0, 10) attains its maximum of 18.72 at
x .= 4.5 × 10−5.
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Fig. 1. The densities of the lognormal distributions based onN(0,�2), with �2 indicated in the plot.

Table 1
Estimators of the expectation of the lognormal distribution �( 1

2 ).

Criterion Name ba (or b̂a) Note (a = 1
2 )

Naive (CLT) X̄ Very inefficient for moderate �2 B×
Naive Naive1 0 Very inefficient for small and moderate �2 B×
Naive Naive2 a Maximum likelihood; inefficient b×
No bias UnbiasedN b̂∗

a,ub; see (4) Small bias only for small �2 B×
No bias UnbiasedA b†

a,ub = a − 1
2n Biaseda B×

MinimumMSE MinMSEn b̂∗
a,ms; see (8) Efficient b∗∗

MinimumMSE MinMSEa b̂†
a,ms Very inefficient for moderate �2a b×

Finney Finney Unbiased, but inefficient U×
Minimax Minmax ba,mx; see (10) Used with �2

mx = 2, 4 and 8 b∗
MinimumMSE Ideal b∗

a,ms; see (8) Used with the value of �2. The reference. b

The symbols at the right-hand margin indicate the following: b—bias; B—substantial bias; U—no bias; ×—inefficient estimator; ∗—our recommendation.
aNot represented in Fig. 2.

The expectations and biases of all estimators have the multiplicative factor exp(�), and the variances and MSEs the factor
exp(2�). Therefore we can reduce our attention to the targets �(a) with � = 0, so that �2 is the sole parameter of interest.
Nevertheless, � is estimated throughout. For each estimator �̂ we study the relative bias Brel and relative root-MSE, defined as

rMSErel(�̂) =

√√√√ MSE(�̂)
m(b∗

a,ms, a)
,

wherem(b∗
a,ms, a) is the ideal MSE given by (9). They reduce the strong association of the bias and MSE with �2.

3.1. Estimators of the mean

Table 1 lists the estimators of the expectation �( 12 ) = exp(� + 1
2�2). The relative biases and MSEs of these estimators with

sample sizes n= 10, 50 and 250 (and k= n− 1), representing small, moderate and large samples, are plotted as functions of �2 in
Fig. 2. They are based on simulations with 10000 replications. The estimators �̂(b†0.5,ub) and �̂(b†0.5,ms) are omitted because they

are uniformly less efficient than �̂(b∗
0.5,ub) and �̂(b∗

0.5,ms), respectively. The diagram shows that the estimator �̂(b̂∗
a,ms), intended

to be efficient, delivers on the promise, even though it is biased throughout. For n=50 and 250, it is uniformlymore efficient than
even the ideal estimator �̂(b∗

a,ms). This is counterintuitive—not knowing the value of �2 is `rewarded' by reduced MSE of �̂. This

is not a contradiction, however, because m(b∗
a,ms, a) is the lower bound for the MSEs of estimators only in the class �̂(b), with a

constant b; �̂(b̂∗
a,ms) does not belong to this class. Finney's estimator is unbiased, but is less efficient than the ideal, substantially

so for large �2. The estimators intended to be approximately unbiased, �̂(b̂∗
a,ub) and �̂(b̂†a,ub), have substantial negative biases for

all �2 and, for n= 50 and 250, �̂(b̂∗
a,ub) approaches efficiency only for very large values of �2. The pursuit of unbiasedness results

in a substantial MSE inflation. For n = 10, �̂(b̂∗
a,ub) is efficient for large values of �2, but even for n = 15 it is much less efficient

than �̂(b̂∗
a,ms).

Despite using a smooth (analytical) reference root-MSE, some of the empirical relative root-MSEs are far from smooth
even with 10000 replications. The estimated root-MSEs have relatively large sampling variances, especially for large �2. The
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Fig. 2. The relative biases and relative root-MSEs of estimators of the expectation of the lognormal distribution, as functions of the variance �2. The upper bounds
�2
mx are indicated by vertical dots.

uncertainty could be indicated in the diagram by pointwise confidence bands (error bars) but these would make the diagram too
cluttered. The uncertainty is appreciable only for estimators in settings in which they are very inefficient. For large �2 and the

naive estimators, the standard error
√
var{�̂(b̂a)} is more than ten times greater than the target �(a). In these cases, the relative

root-MSEs are estimated with standard errors that are in excess of 10% of their sizes.
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The minimax estimators have negative biases, substantial for small sample sizes and large variances. On the log scale, the
relative biases, drawn by thick solid lines in the intervals of plausible values of �2, are indistinguishable from linear functions of
�2. Beyond �2

mx, the negative bias gradually stops increasing and then decreases slowly, but the efficiency deteriorates, and does
so rapidly for small samples and small values of �2

mx.
With �2

mx = 8, the minimax estimator is nearly as efficient as the ideal estimator even for �2 = 10, but for small values of �2

it is perceptibly inefficient. In contrast, when �2
mx is set to 2 or 4, the loss of efficiency with respect to the ideal is only slight

throughout (0,�2
mx), but the loss is substantial for large values of �2, especially with small samples. The minimax estimators

have relatively small variances, and the biases are substantial contributors to the MSE for most values of �2 and n�50. With
increasing sample size, the root-MSE inflation when �2

mx is understated becomes less severe.
The inefficiency of the ML estimator decreases with sample size, but at n = 250 it is still not competitive, except when �2 is

very small. We conclude that �̂(b̂∗
0.5,ms) is uniformly most efficient for �( 12 ) among the estimators we explored for sample sizes

in the range 15–250.

3.2. Estimators of the median

The median corresponds to the setting a = 0. The two naive estimators coincide for a = 0, so we use the label Naive for the
common estimator. We also exclude estimator �̂(b̂†a,ms) because for larger values of �2 (e.g., for �2 >5 when n = 50) it attains
very large values with nontrivial probabilities. The results for sample sizes n = 10, 50 and 250 are presented in Fig. 3. The biases
of the estimators are much more moderate than for estimating the expectation �( 12 ). We have proved the minimax property of

the estimator �̂(ba,mx) only for b >0. Even though b0,mx <0, the estimator �̂(b0,mx) has the minimax property. Together with the

estimator �̂(b̂∗
0,ms), it is about as efficient as the ideal estimator �̂(b∗

0,ms), and they are uniformly more efficient than the sample
and naive estimators, as well as the estimators intended to be unbiased.

Some properties of �̂(b̂∗
0,ms) and �̂(b0,mx) can be inferred from the approximation

D0 = exp

{
− 3�2

(k + 2)n

}
.= 1 − 3�2

(k + 2)n
(14)

for �2>n2. The dependence of D0 on �2, or of �̂(b̂0) on �̂2, is very weak for all but very small k and n. Of course, the sample
median does not depend on �̂2 at all, but the weak influence of �̂2 on �̂(b̂0) is sufficient to make �̂(b̂0) an efficient estimator.
For small b�2 (or b�̂2), exp(b�̂2) .= 1 + b�̂2 and var{exp(b�̂2)} .= 2b2�4/k. That is why the root-MSEs of the estimators �̂(b)
are approximately proportional to �2. With the approximation in (14), b̂0

.= −3/(2n), and therefore the log-relative bias is
approximately proportional to �2 when �2>n.

The sample median is uniformly the least efficient of the estimators we study, except for n= 10 and �2 >6, because estimator
�̂(b̂∗

0,ms) has a breakdown at around �2 = 6, indicated by the vertical dashes. For greater sample sizes, this breakdown occurs for

much greater values of �2. For n = 20, �̂(b̂∗
0,ms) is close to efficiency even for �2 = 10. With increasing sample size, the relative

biases of all the estimators converge to zero. The minimax-like estimators are very forgiving, partly because b0,mx depends on
�2
mx very weakly; their inefficiency when �2 >�2

mx is appreciable only for n = 10. We conclude by recommending the estimator
�̂(b̂∗

0,ms) when n>20, although it is indistinguishable from �̂(b0,mx) based on a liberally chosen value of �2
mx. For smaller sample

sizes, �̂(b0,mx) does not have the drawback of a sudden MSE inflation.

3.3. Estimators of the mode

The mode of a continuous distribution does not have a natural sample or naive estimator. We could select a `window' width
w and define the estimator of the mode as the centre of the interval of widthw (or the mean of such centres), which contains the
largest number of observations. However, such an estimator is bound to be very inefficient.

The relative biases and root-MSEs of the estimators intended to be unbiased and efficient for �(−1) and of the minimax-like
estimators �̂(b−1,mx) are plotted in Fig. 4. The estimator �̂(b̂∗

−1,ub) is severely biased and very inefficient, except when �2 is very

small. The estimator �̂(b̂∗
−1,ms) is biased somewhat less, and is muchmore efficient in ranges where it has a finite MSE. For n=10,

its MSE is infinite even for �2 = 0.1, and the corresponding breakdown point for n= 50 is at �2 = 7.9; the graph of its root-MSE is
discontinued in the diagram at that value.

The biases and MSEs of �̂(b̂†−1,ub) and �̂(b̂†−1,ms) are extremely large; they are off the scale in all six panels of the diagram for

most values of �2, and are therefore not plotted at all. With a well informed setting of �2
mx, the minimax-like estimator is quite

efficient for n�50. For n = 50, �̂(b−1,mx) with �2
mx = 8 is only slightly less efficient than the ideal even for �2 = 10, and is more

efficient than �̂(b̂∗
−1,ms) for �2 >4.1. It is relatively very inefficient only when �2 is very small. The estimators �̂(b−1,mx) with

�2
mx = 2 and 4 are quite efficient for very small values of �2, but for large values of �2 they are very inefficient. The penalty for

declaring a value of �2
mx that is too large or too small is quite harsh.
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Fig. 3. The relative biases and relative root-MSEs of estimators of the median of the lognormal distribution, as functions of the variance �2.

Some insight into the breakdown of the estimators �̂(b̂∗
−1,ms) and �̂(b̂†−1,ms) can be gained directly from the expressions for

the corresponding coefficients b. The singularity of the coefficient b−1 caused by the valueD−1= 1
2 corresponds to �2= log(2)(k+

2)n/(2n+3), that is, for n=50 and k=49, to �2
† =17.16. In b̂∗

−1,ms, we substitute �̂2 for �2 inD−1, so very large or very small values

of b̂1 are obtained whenever values around 17 are plausible for �̂2. For n = 50 this occurs for �2 >7.9. With the approximation

to D−1 by the Taylor expansion, the denominator of b†−1,ms vanishes when �2 = (k + 2)n/{k(2n + 3)}, which is close to 0.25 for

all but very small k and n. Hence the breakdown of �̂(b†a,ms) for �2 around 0.25; it occurs also for other sample sizes. Breakdown
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Fig. 4. The relative biases and relative root-MSEs of estimators of the mode of the lognormal distribution, as functions of the variance �2.

occurs even for the minimax-like estimators for �2
mx = 4 and 8. For sample size n = 250, only the estimator �̂(b̂∗

−1,ms) performs

well throughout the range of values of �2.
We conclude by suggesting that estimation of the mode be based on at least n = 50 observations. Estimator �̂(b̂∗

−1,ms) is

nearly efficient for small values of �2, and is a relatively safe choice otherwise. It breaks down for large values of �2, but these
breakdown values increase with �2. If the values of �2 can be narrowed down, say, to an interval of length 2.0 or shorter, then
the minimax-like estimator is quite efficient.
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3.4. MSE estimation

In this sectionwe discuss estimation of theMSE of �̂(b̂a), with a= 1
2 and b̂0.5= b̂∗

0.5,ms, for which the estimator ismore efficient

than the ideal. We estimate MSE{�(b̂∗
0.5,ms);�(

1
2 )} by the MSE of the ideal `estimator' evaluated at �2 = �̂2, that is,

m̂
(
b̂∗
0.5,ms;

1
2

)
= MSE

{
�̂(b∗

0.5,ms);�
(
1
2

)∣∣∣∣�2 = �̂2
}
.

This is our only candidate for MSE estimation and we have no reference to which MSE(m̂;m) could be compared. We therefore
adhere to the convention and study the bias of m̂. Underestimation of MSE is usually regarded as a greater deficiency than over-
estimation by the same quantity; the former is interpreted as dishonest assessment, whereas the latter amounts to `underselling'
the quality of the estimator; see Longford (2007, Section A.20) for a discussion.

We have to consider estimation of MSE and root-MSE separately because these targets are related nonlinearly. For example, if

an estimator m̂ is unbiased form, then
√
m̂ need not be unbiased for

√
m. The relative biases, defined as ¯̂m/m and

√
m̂/

√
m, where

the bar ¯ indicates averaging over the replications, are plotted for n = 50, 100 and 250 in Fig. 5. Both m̂ and
√
m̂ overestimate

their respective targets, the MSE and root-MSE, except for very small values of �2. On the multiplicative scale, the extent of
overestimation is smaller for root-MSE than for MSE, and is smaller for larger sample sizes. For n = 10 and 25, the estimators are
useful only for very small �2; for n>250, the bias of the root-MSE estimator is very small even for �2 = 10.

The substantial bias of these estimators for small sample sizes should be judged in the context of large variance of the data as
well as of the distribution of the MSE and rMSE estimators. For example, the relative biases of the MSE and root-MSE for �2 = 5
and n=10 are 3.45 and 0.32, respectively, but these figures are associated with standard deviations (over the replications) of 35.6
and 1.11, respectively. We smoothed the empirical values of the biases only slightly, to retain an indication of the uncertainty
about them that is present even in 10000 replications.

4. Conclusions

Estimating the expectation,median andmode of the lognormal distribution are examples of failure of themaximum likelihood
andof inapplicability of the asymptotic theory for sample sizes that formany other commonly encountered distributionswould be
sufficiently large.Wederived estimators that aremuchmore efficient than their naive alternatives, and explored how information
about �2 can be incorporated in (minimax or minimax-like) estimation.

For estimating the expectation of the lognormal distribution from a random sample of size n, we propose the estimator
exp(�̂+ b̂�̂2), where �̂ and �̂2 are the standard estimators for the respectivemean and variance on the logarithmic (normal) scale,
and

b̂ = n − 1
2�̂2

D − 1
2D − 1

,

where

D = exp
{

n − 3
n(n + 1)

�̂2
}
.
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Althoughbiased, this estimator ismuchmore efficient than Finney's estimator, especially for large variances�2. Finney's estimator
is minimum-variance unbiased, a clearly formulated optimality property, whereas our estimator has no (universal) optimality
properties. Our results indicate that unbiasedness and efficiency (small MSE) are conflicting inferential goals when estimating
the location of a lognormal distribution. Insisting on unbiasedness when pursuing efficiency is an unaffordable luxury.

The counterintuitive result that �̂(b̂∗
0.5,ms) is (slightly)moreefficient than �̂(b∗

0.5,ms) for estimating theexpectationexp(�+ 1
2�2)

can be exploited for estimating the MSE of �̂(b̂∗
0.5,ms) by substituting �̂2 in the expression (9) for MSE{�̂(b∗

0.5,ms);�(
1
2 )}. The

resultingMSE (and root-MSE) estimator has a positive bias which for a given �2 declines with sample size, and for a given sample
size increases with �2.

Our estimators rely on the functional form of the target, exp(� + a�2), as well as on independence of �̂ and �̂2, and so their
robustness might be questioned. Robustness can be assessed by simulations, for instance, using the exponential of a distribution
that differs slightly from the normal. For this purpose, we can usemixtures of normals with t distributions with few (or even only
one) degree of freedom (and some noncentrality). We note that the contaminating (log-t) distributions do not have expectations
and therefore neither do the mixtures for any number of degrees of freedom. In any sensitivity study, the naive estimators start
with a considerable handicap which is unlikely to be overcome for moderate departures from lognormality.
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