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1 Introduction

The return mean-variance frontier (RMVF) originally proposed by Markowitz (1952) is

widely regarded as the cornerstone of modern investment theory. Similarly, the stochastic dis-

count factor (SDF) mean-variance frontier (SMVF) introduced by Hansen and Jagannathan

(1991) represents a major breakthrough in the way financial economists look at data on asset

returns to discern which asset pricing theories are not empirically falsified. Somewhat remark-

ably, it turns out that both frontiers are intimately related, as they effectively summarise the

sample information about the first and second moments of asset payoffs.

In this context, tests for mean-variance spanning in the RMVF and SMVF try to answer a

very simple question: does the relevant frontier remain unchanged after increasing the number

of assets that we analyse? And although the answer has to be the same for both frontiers,

the implications of spanning are different. When we consider the RMVF, we want to assess if

the exclusion of some assets reduces the risk-return trade-offs faced by investors, while when

we study the SMVF, we want to determine if the additional assets impose tighter restrictions

on asset pricing models irrespective of whether investors have mean-variance preferences. It is

perhaps not surprising that there is a strand of the literature that develops tests for spanning

in the RMVF (see Huberman and Kandel (1987) and Ferson, Foerster and Keim (1993)), and

another one that develops tests for spanning in the SMVF (see De Santis (1993, 1995) and

Bekaert and Urias (1996)).

Despite their different motivation, both approaches are systematically used in numerous

empirical studies of (i) mutual fund performance evaluation (see De Roon and Nijman (2001)

for a survey); (ii) gains from portfolio diversification arising from separate asset classes (Hunter

and Simon (2005)) or cross-border investments (Errunza, Hogan and Hung (1999)), but also

accruing from non-financial assets such as real estate (Stevenson (2001)), or human capital

(Palacios-Huerta (2003)); and (iii) risk premia restrictions imposed by linear factor pricing

models (see e.g. the Campbell, Lo and MacKinlay (1996) or Cochrane (2001) textbooks).

The purpose of this paper is to provide a unified treatment of spanning tests. We do so at

three different levels:

a) We exploit the duality of the two frontiers to derive novel spanning tests that are not tied

down to the specific properties of either frontier. In particular, since both frontiers are spanned

by the uncentred or centred versions of the cost and mean representing portfolios introduced
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by Chamberlain and Rothschild (1983), we propose to test if those portfolios are shared by the

initial and extended sets of assets. An important advantage of our approach is that it has a

direct economic interpretation because mean representing portfolios are the ones that mimic the

safe asset with the minimum tracking error, while cost representing portfolios do the same thing

for stochastic discount factors.

Although our tests fit rather naturally in a GMM framework, the introduction of additional

moment conditions that define mean returns renders the joint covariance matrix of the aug-

mented set of moment conditions singular in the population, but not necessarily in the sample,

which complicates inference. In fact, the same type of singularity also affects other spanning

tests in the RMVF and SMVF, a fact that had been so far overlooked. For that reason, we

extend the theory of optimal GMM estimation in Hansen (1982) to those non-trivial situations

in which the long run second moment matrix of the estimating functions is singular along a

manifold in the parameter space that contains the true value. This case covers not only the

spanning tests that we consider but also other situations with dynamic stochastic singularities.

b) We compare our proposed tests to the extant spanning tests, and show that the parametric

restrictions are equivalent, which was known of the existing procedures. More importantly, we

also show that all the tests are asymptotically equivalent under the null and compatible sequences

of local alternatives, despite the fact that the number of parameters and moment conditions can

be different, although the number of degrees of freedom is the same. We would like to emphasise

that we obtain our novel asymptotic equivalence results under fairly weak assumptions on the

distribution of asset returns. In particular, we do not require that returns are independent or

identically distributed (i.i.d.) as Gaussian random vectors. And although we focus our discussion

on overidentifying restrictions tests of spanning, which coincide with Distance Metric tests in

this context, our equivalence results also apply to Lagrange Multipler and Wald tests, which

share their optimality properties under the null and sequences of local alternatives.

c) We show that by using single-step GMM procedures such as the Continuously Updated

(CU) version in Hansen, Heaton and Yaron (1996), we can make all the different overidentifica-

tion tests numerically identical, which means that one could argue that effectively there is only

one GMM-based spanning test. Intuitively, generalised empirical likelihood procedures like CU-

GMM allow us to make our inferences invariant to both reparametrisations and transformations

of the moment conditions, thereby reproducing the uniqueness of the likelihood ratio (LR) test
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in a classical context. Formally, though, the optimal GMM procedure under singularity that we

develop is crucial in reaching this conclusion. In contrast, Wald tests will not be numerically

equivalent, which confirms the well-known fact that their finite sample distribution can differ

substantially from its asymptotic distribution in non-linear contexts.

For illustrative purposes, we apply our testing procedures to study if the US stock market

portfolio and the familiar two Fama-French portfolios that capture size and value effects span the

same return and SDF mean-variance frontiers as six portfolios sorted by size and book-to-market.

Since we reject the null hypothesis of spanning, our results suggest that a mean-variance investor

who is fully invested in US stocks would be worse off if her choice were constrained to strategies

that only combine the size and value mimicking portfolios with the market. Equivalently, our

results imply that these three funds do not fully capture the information about SDF’s in the six

size and book-to-market sorted portfolios.

The rest of the paper is as follows. In section 2, we introduce the required mathematical

structure, while in section 3 we present our solution for optimal GMM inference with dynamic

stochastic singularities. This section is written so that readers who are not interested in spanning

tests can apply it to other problems, while those who are not interested in GMM inference can

go directly to the new spanning tests proposed in section 4. Then, we carry out our comparison

of all the tests in section 5. Finally, we present our empirical application in section 6 and

summarise our conclusions in section 7. Proofs and auxiliary results are relegated to appendices.

2 Theoretical background

In this section, we first describe the representing portfolios introduced by Chamberlain and

Rothschild (1983), which we then use to characterise the RMVF and SMVF. For the sake of

brevity, we do not discuss any special cases, which we study in Peñaranda and Sentana (2004).1

2.1 Cost and Mean Representing Portfolios

Consider an economy with a finite numberN of risky assets whose random payoffs are defined

on an underlying probability space. Let R = (R1, . . . , RN )
0 denote the vector of gross returns

on those assets, with first and second uncentred moments given by ν and Γ, respectively. We

1Specifically, Peñaranda and Sentana (2004) develop spanning tests in the presence of a safe asset, in the case
of arbitrage (i.e. zero-cost) portfolios, and when all expected returns are equal.
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assume that these moments are bounded, which implies that Ri ∈ L2 (i = 1, . . . , N), where L2 is

the collection of all random variables defined on the underlying probability space with bounded

second moments. We can then obtain the covariance matrix of the N asset returns, Σ say, as

Γ− νν0, which we assume has full rank. This implies that none of the original assets is either

riskless or redundant, and consequently, that it is not possible to generate a riskless portfolio

from R, other than the trivial one. We also assume that not all expected returns are equal.

Let P be the set of the payoffs from all possible portfolios of the N original assets, which

is given by the linear span of R, hRi. Therefore, the elements of P will be of the form p =PN
i=1wiRi = w

0R, where w = (w1, . . . , wN)
0 ∈ RN is a vector of portfolio weights. There are at

least three characteristics of portfolios in which investors are interested: their cost, the expected

value of their payoffs, and their variance, which will be given by C(p) = w0cN , E(p) = w0ν and

V (p) = w0Σw respectively, where cN is a vector of N ones, which reflects the fact that we have

normalised the price of all the original assets to 1. Since P is a closed linear subspace of L2, it

is also a Hilbert space under the mean square inner product, E(xy), and the associated mean

square norm
p
E(x2), where x, y ∈ L2. Such a topology allows us to define the least squares

projection of any q ∈ L2 onto P as:

E(qR)E−1(RR0)R, (1)

which is the element of P that is closest to q in the mean square norm.

In this context, we can formally understand C(.) and E(.) as linear functionals that map

the elements of P onto the real line. The expected value functional is always continuous on L2

while our full rank assumption on Σ implies that Γ has full rank too, and consequently that

the cost functional is also continuous on P . The Riesz representation theorem then implies that

there exist two unique elements of P that represent these functionals over P (see Chamberlain

and Rothschild (1983)). In particular, the uncentred cost and mean representing portfolios, p∗

and p+, respectively, will be such that:

C(p) = E(p∗p) and E(p) = E(p+p) ∀p ∈ P.

It is then straightforward to show that

p∗ = φ∗0R = c0NΓ
−1R,

p+ = φ+0R = ν0Γ−1R,
(2)

where
¡
φ∗,φ+

¢
will be parameters of interest in spanning tests.
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If P included a unit payoff, then p+ would coincide with it. But even though it does not, it

follows from (1) that p+ is the projection of 1 onto P , which in financial markets parlance simply

means that the mean representing portfolio is the portfolio that “mimics” the safe asset with

the minimum “tracking error”. To give a similar economic interpretation to p∗, it is convenient

to recall that a stochastic discount factor, m say, is any scalar random variable defined on the

same underlying probability space which prices assets in terms of their expected cross product

with it. We can again use (1) to interpret p∗ as the projection of any m onto P , i.e. as the

portfolio that best mimics stochastic discount factors. In addition, since C(1) = E(1 ·m) = c

say, the expected value of m defines the shadow price of a unit payoff.

Since C(p∗) = E(p∗2) > 0, we can always define an associated return R∗ as p∗/C(p∗).

Similarly, we can usually define R+ as p+/C(p+), except when p∗ and p+ are orthogonal, which

in view of our assumptions happens if and only if cov(p∗∗, p++) = ν0Σ−1cN = 0.

Finally, Chamberlain and Rothschild (1983) show that an alternative valid topology on P

can be defined with covariance as inner product and standard deviation as norm when there

is not a safe asset in P . Hence, we could also represent the two functionals by means of two

alternative centred representing portfolios, p∗∗ and p++ in P , such that

C(p) = Cov(p∗∗, p) and E(p) = Cov(p++, p) ∀p ∈ P.

Not surprisingly,

p∗∗ = ϕ∗0R = c0NΣ
−1R = p∗ +

¡
ν0Σ−1cN

¢
p+,

p++ = ϕ+0R = ν 0Σ−1R = (1 + ν0Σ−1ν)p+,
(3)

where again (ϕ∗,ϕ+) will be parameters of interest in spanning tests. We can then define the

return associated with p∗∗ as R∗∗ = p∗∗/C(p∗∗) =
¡
c0NΣ

−1R
¢
/
¡
c0NΣ

−1cN
¢
, which coincides with

the minimum variance return. Similarly, we can also define R++ as p++/C(p++) = p+/C(p+) =

R+ if (and only if) ν 0Σ−1cN 6= 0.2

2.2 SDF and Return Mean-Variance Frontiers

The SMVF, or Hansen and Jagannathan (1991) frontier, is the set of admissible SDF’s with

the lowest variance for a given mean. Therefore, its elements solve the programme

min
m∈L2

V (m) s.t. E(m) = c ∈ R, E(mR) = cN .

2When ν0Σ−1cN = 0, both p+ and p++ are arbitrage portfolios, which means that neither R+ nor R++ can
be defined. In addition, p∗∗ = p∗, so that R∗∗ = R∗.
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If there were a safe asset then its gross return would pin down a unique c−1. But even

though no safe asset exists, we can trace the SMVF by solving the above programme for any

safe return c−1 ≥ 0. As shown by Gallant, Hansen and Tauchen (1990), its solution mMV (c)

can be expressed as

mMV (c) = p∗ + α(c)(1− p+), α(c) =
c−E (p∗)

E (1− p+)
,

which shows that all the elements of the SMVF are portfolios spanned by p∗ and 1− p+ alone.

Note, however, thatmMV (c) /∈ P except for p∗. Graphically, p∗ is the element on the SMVF that

is closest to the origin because it has the lowest second moment (see Hansen and Jagannathan

(1991)). On the other hand, p+ is not located on this frontier but it is related to its asymptotes

since the term 1− p+ becomes increasingly important as c→ ±∞.

The RMVF, or Markowitz (1952) frontier, is the set of feasible unit-cost portfolios that have

the lowest variance for a given mean. Therefore, its elements solve the programme

min
p∈P

V (p) s.t. E(p) = ν ∈ R, C(p) = 1.

As shown by Hansen and Richard (1987), the RMVF portfolios will be:

RMV (ν) = R∗ + ω(ν)A+, ω(ν) =
ν −E(R∗)

E(A+)
,

where A+ = p+ − C(p+)R∗, as long as not all νi are equal, which we are assuming throughout.

Thus, the RMVF will also be spanned by p∗ and p+. Graphically, R∗ is the element of the RMVF

that is closest to the origin because it has the minimum second moment, while R+ is the point

of tangency of the frontier with a ray from the origin.

It is easy to show that if we subtract from mMV (c) its position on the unit payoff, and

compute the corresponding return, then we will generally find an element on the RMVF (see

Peñaranda and Sentana (2008) for details).

3 Optimal GMM in a singular set-up

We begin by briefly reviewing the inference methods proposed by Hansen (1982). This

allows us to introduce notation and assumptions for the extension required to deal with the

spanning tests in section 4, in which the second moment matrix of the estimating functions is

singular along an implicit manifold in the parameter space. Those readers who are not interested

in GMM inference can go directly to section 4.
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Let {xt}Tt=1 denote a strictly stationary and ergodic stochastic process, and define h(xt;θ) as

an n× 1 vector of known functions of xt, where θ is a k× 1 vector of unknown parameters. The

true parameter value, θ0, which we assume belongs to the interior of the compact set Θ ⊆ Rk,

is implicitly defined by the (population) moment conditions:

E[h(xt;θ
0)] = 0,

where the expectation is taken with respect to the stationary distribution of xt.

GMM estimators minimize a specific norm h̄0T (θ)ΥT h̄T (θ) of the sample moments h̄T (θ) =

T−1
PT

t=1 h(xt;θ) defined by some weighting matrix ΥT . A necessary condition for the identi-

fication of θ is the usual order condition n ≥ k. If the inequality is strict, then we say that θ

is (seemingly) overidentified. On the other hand, we say that θ is (seemingly) exactly identified

when both dimensions coincide, in which case the weighting matrix ΥT will become irrelevant

for large enough T if its probability limit Υ is a positive definite matrix. In the overidentified

case, in contrast, Hansen (1982) showed that if the long-run covariance matrix of the moment

conditions S(θ0) = avar[
√
T h̄T (θ

0)] has full rank, then S−1(θ0) will be the “optimal” weight-

ing matrix, in the sense that the difference between the asymptotic covariance matrix of the

resulting GMM estimator and a GMM estimator based on any other norm of the same moment

conditions is positive semidefinite. Therefore, the optimal GMM estimator of θ will be

θ̂T = argmin
θ∈Θ

JT (θ),

where

JT (θ) = h̄
0
T (θ)S

−1¡θ0¢ h̄
T
(θ).

This optimal estimator is infeasible unless we know S(θ0), but under additional regular-

ity conditions, we can define an asymptotically equivalent but feasible two-step optimal GMM

estimator by replacing S(θ0) with an estimator ST (θ) evaluated at some initial consistent esti-

mator of θ0, θ̇T say. There is an extensive literature on heteroskedasticity and autocorrelation

consistent (HAC) estimators of long-run covariance matrices, which typically adopt the form

ST (θ) =
1

T

TX
t=1

TX
s=1

wtsh(xt;θ)h
0(xs;θ) (4)

for some weights wts, which are the kernel function of the implicit nonparametric spectral density

estimator (see for example DeJong and Davidson (2000) and the references therein). Although
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(4) is prevalent in empirical work, being the default choice in the most popular econometric

packages, it implicitly assumes that the moments are correctly specified. To avoid misleading

inferences in case of misspecification, Hall (2000) advocates to use instead a HAC estimator that

first centres the sample moments, as in Hansen, Heaton and Yaron (1996):

ST (θ) =
1

T

TX
t=1

TX
s=1

wtsu(xt;θ)u
0(xs;θ), u(xt;θ) = h(xt;θ)− h̄T (θ). (5)

But even if the moments are correctly specified, it will also be important to distinguish between

ST (θ) and ST (θ) in our singular context.

An alternative way to make the optimal GMM estimator feasible is by explicitly taking into

account in the criterion function the dependence of the long-run variance on the parameter

values, as in the single-step CU-GMM estimator of Hansen, Heaton and Yaron (1996), which is

defined as

θ̃T = argmin
θ∈Θ

J̃T (θ),

where

J̃T (θ) = h̄
0
T (θ)S

−1
T (θ)h̄T (θ).

Although this estimator is often more difficult to compute than a two-step estimator, particu-

larly in linear models, an important advantage is that it is numerically invariant to both bijective

reparametrisations and parameter-dependent linear transformations of the moment conditions,

which will prove useful in our context. Newey and Smith (2004) highlight other important

advantages of CU- over two-step GMM by going beyond the usual first-order asymptotic equiv-

alence results. They also discuss alternative single-step estimators, such as empirical likelihood

or exponentially-tilted methods, which are also numerically invariant to transformations.3 In

contrast, these properties do not necessarily hold for two-step or iterated GMM.

Assuming that h(xt;θ) is continuously differentiable in θ, with a Jacobian matrix Dt(θ) =

∂h(xt;θ)/∂θ
0 whose sample and population means, D̄T (θ) and D(θ) respectively, are also con-

tinuous in θ, the condition rank[D0(θ0)S−1
¡
θ0
¢
D(θ0)] = k, which requires that rank[D(θ0)] =

k, is sufficient for the local identifiability of θ at θ0. Under the additional assumptions that

E(supθ∈Θ kh(xt;θ)k) <∞, D̄T (θ
i)

p→ D(θ0) if θi
p→ θ0, and

√
T h̄T (θ

0)
d→ N [0,S(θ0)] we will

have that
√
T [θ̂T − θ0] d→ N{0,

£
D0(θ0)S−1(θ0)D(θ0)

¤−1}
3 In fact, Antoine, Bonnal and Renault (2007) study the Euclidean empirical likelihood estimator, which is

numerically equivalent to CU-GMM for θ.
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(see Newey and MacFadden (1994) for more primitive regularity conditions and proofs). More-

over, T ·JT (θ̂T ) will be asymptotically distributed as a chi-square with n−k degrees of freedom

if E[h(xt;θ0)] = 0 holds, so that we can perform an overidentifying restrictions (J) test when

n > k.

Unfortunately, Hansen’s (1982) definitions of optimal GMM estimators and J test break

down when S(θ0) is singular. In the remainder of this section we shall discuss optimal GMM es-

timators of θ and the corresponding overidentification test when the asymptotic second moment

matrix of h̄T (xt;θ0) is singular in the population but not necessarily in the sample, which is a

prevalent feature of the spanning tests in section 4. In particular, the following two assumptions

cover the singularities that arise in the context of those tests:

Assumption 1 Let Π (θ) denote a n × s matrix of continuously differentiable functions of θ,
where 0 ≤ s ≤ k. The subset of Θ for which

Π0(θ)
h√

T h̄T (θ)
i
L2→ 0 (6)

can be fully characterised by m(θ) = 0, where m(θ) is a s× 1 known continuously differentiable
transformation of θ.

Assumption 2 If s > 0, then m(θ0) = 0, rank[S(θ0)] = n− s, and rank
£
∂m(θ0)/∂θ0

¤
= s.

For the non-standard case of s > 0, the first assumption simply defines m(θ) = 0 as the

implicit k−s-dimensional manifold inΘ over which s linear combinations of
√
T h̄T (θ) converge

in mean square to zero. In turn, the second assumption says that the true values of the parameters

belong to that manifold, and it also ensures that the singularity of S(θ0), when it exists, is fully

characterised by Assumption 1. Finally, the rank condition in Assumption 2, together with the

convergence in mean square to zero in Assumption 1, will guarantee the local identifiability of

θ.

Assumption 1 covers dynamic models with singularities in the spectral density matrix of the

influence functions, such as

[Π0(θ) +Π1(θ)L]
0 h(xt,θ) = 0 ∀xt,

where L denotes the lag operator, so that Π(θ) = Π0(θ) +Π1(θ) (see Arellano, Hansen and

Sentana (2009) and Diez de los Rios and Sentana (2010) for examples). In fact, in the case of

spanning tests we will have that

Π0(θ)h(xt,θ) = 0 ∀xt, (7)
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which implies a singularity not only in the long run but also in the contemporaneous second

moment matrix of h(xt,θ).

In that context, Assumption 1 goes far beyond trivial situations with “duplicated” moment

conditions, in which some linear combinations of h(xt,θ) with coefficients that do not depend

on θ are 0 for all θ. Given that in those cases any HAC estimator ST (θ) will be singular in

finite samples irrespective of (i) the use of CU or two-step estimators, (ii) the choice of first-

step estimator θ̇T in the second case, and (iii) the use of centred or uncentred moments in the

estimation of S(θ0), the appropriate action is simply to eliminate the “duplicated” moment

conditions, which can be mechanically achieved by using as weighting matrix any generalised

inverse of the HAC estimators (4) or (5).

Similarly, Assumption 1 is also more general than

Π0(θ)h(xt,θ) =m (θ) ∀xt and ∀θ ∈Θ, (8)

in which case there would be s linear combinations of h(xt,θ) with coefficients that depend on θ

which would be constant regardless of the parameter values. While (8) implies that m(θ0) = 0,

Assumption 1 does not require that the singularity of the covariance matrix is uniform over the

parameter space. This distinction is important for our purposes because not all spanning tests

fit within this more restrictive framework.

Our proposed solution for conducting optimal GMM estimation and inference under the type

of singularity characterised by Assumptions 1 and 2 involves the following two steps:

a) impose the parametric restrictions m(θ) = 0, which means that we implicitly estimate a

subset of k−s free parameters, the rest being pinned down by the manifold, and simultaneously

b) replace the ordinary inverse of S(θ0), which cannot be defined when s > 0, by any of its

generalised inverses, S−(θ0).

In this way, we effectively decrease both the number of parameters and the number of moment

conditions to avoid the singularity, but their difference (the degrees of freedom of the J test)

remains the same.4 Our solution is similar in spirit to the approach discussed in Judge et

al. (1985, section 12.5.2) to deal with a classical multivariate regression model with a singular

covariance matrix, which arises for example in complete linear expenditure systems. In that
4 In the unlikely situation of s = k, the dimension of free parameters would be zero, which reflects the fact

that the manifold m(θ) = 0 collapses to the single point θ = θ0. As a result, we should be able recover the true
value of the parameters without any sampling variability. In contrast, if s = 0, the dimension of fixed parameters
would be zero, which reflects the fact that S−(θ0) = S−1(θ0). As a result, we can estimate θ by means of the
regular GMM methods discussed before.
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context, these authors suggest to reduce the number of parameters by exploiting the parametric

restrictions that give rise to the singularity of the residual covariance matrix, as well as the

number of equations.

The following Proposition formalises the optimality of our approach:

Proposition 1 Let

θ̂T = argmin
θ∈Θ

h̄0T (θ)S
−(θ0)h̄T (θ) s.t. m(θ) = 0 (9)

denote our proposed GMM estimator of the k × 1 vector of unknown parameter θ defined by
the n ≥ k moment conditions E[h(xt;θ)] = 0, which satisfy all the usual regularity conditions,
together with Assumptions 1 and 2. Then
a) θ is first-order identified along the manifold m(θ) = 0.
b) θ̂T is asymptotically efficient, in the sense that the difference between its asymptotic covariance
matrix and the asymptotic covariance matrix of another GMM estimator of θ based on any other
norm of the moment conditions is negative semidefinite regardless of the weighting matrix ΥT

and regardless of whether or not we impose the equality restrictions m(θ) = 0.
c)

T · h̄0T (θ̂T )S−
¡
θ0
¢
h̄T (θ̂T )

d→χ2 (n− k) ,

where χ2 (0) = 0 with probability 1.
d) If θ̄T denotes a variant of (9) based on a different choice of generalised inverse S−(θ0) then

√
T (θ̂T − θ̄T ) = op(1).

The first-order identifiability of θ along the manifold m(θ) = 0 in part a) guarantees that

θ0 will be locally identified. This result is also necessary for the asymptotic normality of θ̂T ,

whose asymptotic covariance matrix will be of rank k − s, and the asymptotic χ2 distribution

of the associated J test (see Sargan (1983) and Dovonon and Renault (2009) for a discussion of

those cases in which θ0 remains locally identified but the Jacobian of the moment conditions is

of reduced rank).

More importantly, part b) implies that if we simply weighted the original moment condi-

tions by S−(θ0) without exploiting the equality restrictions implicit in m(θ) = 0, the resulting

estimators and testing procedures would generally be suboptimal because they would give no

weight to precisely the s asymptotically degenerate linear combinations of
√
T h̄T (θ).5

Part b) also implies that if we imposed the parametric restrictions m(θ) = 0, but used a

weighting matrix whose probability limit differed from S−(θ0), then the resulting estimators

and testing procedures would also be generally suboptimal.

5 In fact, it may well happen that θ is not even identified from the reduced set of n − s moment conditions
implicitly defined by a generalised inverse, because, for instance, n − s < k. After imposing the restriction
m(θ) = 0, on the other hand, the reduced set of moment conditions will locally identify θ at θ0.
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Although part d) implies that the choice of generalised inverse is asymptotically inconse-

quential, in practice the simplest solution would be to delete s of the moment conditions that

interact with Π(θ) in Assumption 1, which is equivalent to a Cholesky-based generalised inverse

for a specific re-ordering of h(xt;θ). However, since we might end up deleting moments that are

not really affected by Π
¡
θ0
¢
, a safer symmetric alternative would be to use the Moore-Penrose

inverse. Specifically, let

S(θ0) = [ P Q ]

⎡⎣ Λ 0

0 0

⎤⎦⎡⎣ P0

Q0

⎤⎦ = P∆P0 (10)

denote the spectral (eigenvalue-eigenvector) decomposition of S(θ0), where Λ is a positive defi-

nite diagonal matrix of order n− s. Given that the Moore-Penrose inverse is simply

S+(θ0) = PΛ−1P0,

optimal GMM under singularity effectively works with the n − s sample moments P0h̄T (θ),

whose asymptotic long-run variance is the non-singular matrix Λ.

In fact, if we imposed the equality restrictions implicit in m(θ) = 0 by reparametrising the

model in terms of k − s free parameters, as in the proof of Proposition 1, then the asymptotic

covariance matrix of these parameters would be given by the usual GMM formulas as long as

we substituted S−1
¡
θ0
¢
by S−

¡
θ0
¢
.

Once again, the optimal GMM approach that we have just described is not feasible unless

we know S−(θ0), but under standard regularity conditions, the asymptotics will not change if

we replace this matrix by a consistent estimator. However, an estimator of S−(θ0) must be

chosen with some care when s > 0 in order to avoid discontinuities in the limit. The reason

is the following: as we saw before, if θ̇T is an initial consistent estimator of θ0, then we can

easily compute a consistent estimator of S(θ0), say ST (θ̇T ), by means of a HAC covariance

matrix estimator based on h(xt; θ̇T ). But in general, we will not consistently estimate S−(θ0)

in singular cases if ST (θ̇T ) has full rank for finite T .6

This is an empirically relevant issue even if Π0(θ)h(xt,θ) = m(θ) for all xt and for all θ

as in (8) because a researcher who, unaware of the singularity of S(θ0), combines a first step

6A trivial non-random example of discontinuities is the sequence 1/T , which converges to 0 while (1/T )− = T
diverges. Theorem 1 in Andrews (1987) derives the conditions under which a quadratic form based on a g-inverted
weighting matrix converges to a chi-square distribution. See also Dufour and Valery (2009) for regularisation
procedures that avoid generalised inverses.

12



estimator such thatm(θ̇T ) 6= 0 with ST (θ) instead of ST (θ), will end up with seemingly optimal

estimators and testing procedures whose asymptotic distribution is non-standard.

In the static case that is relevant for our spanning tests, which is characterised by condition

(7), we can obtain HAC estimators ST (θ̇T ) or ST (θ̇T ) whose rank is n− s in finite samples by

simply using an estimator of θ0 that belongs to the manifold m(θ) = 0. For that reason, our

proposed two-step optimal GMM estimator in that context would be

θ̈T = argmin
θ∈Θ

h̄0T (θ)S
−
T

³
θ̇T

´
h̄T (θ) s.t. m(θ) = 0,

where θ̇T is an initial consistent estimator of θ0 that satisfies the known equality restrictions

m(θ̇T ) = 0. A similar argument shows that the optimal CU-GMM estimator that exploits the

singularity of the second moment matrix in finite samples will be

θ̃T = argmin
θ∈Θ

h̄0T (θ)S
−
T (θ) h̄T (θ) s.t. m(θ) = 0.

In Appendix C.2 we show how to compute this CU-GMM estimator by means of certain

OLS regressions which are robust to multicollinearity. In that way, we do not really need to

specify ex-ante the number of zero eigenvalues in order to compute a generalised inverse. In

addition, our results show that the CU criterion function is numerically invariant to the choice

of generalised inverse.

In the more general dynamic case covered by Assumption 1, though, restricting θ to lie

on the manifold is not generally enough to ensure the singularity of ST (θ) or ST (θ) in finite

samples. In those cases, we would additionally recommend the elimination of the s smallest

eigenvalues and associated eigenvectors of the spectral decomposition of those matrices before

computing their generalised inverse.

4 Application to spanning tests

Let R1 and R2 denote the gross returns to two subsets of N1 and N2 assets, respectively, so

that the dimension of the expanded set of returns R = (R01,R
0
2)
0 is N = N1+N2, which we treat

as fixed hereinafter in line with the existing literature. Importantly, these assets can be either

primitive, like stocks and bonds, or mutual funds managed according to some specific active

portfolio strategy. We want to compare the SMVF and RMVF frontiers generated by R1 with

the ones generated by the whole of R. In general, when we also consider R2, the RMVF frontier

will shift to the left because the available risk-return trade-offs improve, while the SMVF frontier
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will rise because there is more information in the data about the underlying SDF. However, this

is not always the case. In particular, we say that R1 spans the SMVF and/or RMVF generated

from R when the original and extended frontiers coincide.7 The purpose of this section is to

study spanning tests given panel data on R over T periods. As we shall see, the optimal GMM

theory under singularity developed in the previous section is particularly relevant.

4.1 Uncentred cost and mean representing portfolios

Given that the cost and mean representing portfolios defined in (2) span both the SMVF and

RMVF, a rather natural way to test for spanning that is not tied down to the specific properties

of either frontier consists in studying whether these portfolios are common to the linear spans

hR1i and hRi. In particular, if p∗1 and p+1 denote the cost and mean representing portfolios

corresponding to hR1i then mean-variance spanning of R by R1 is equivalent to

E(Rp+1 ) = ν,

E(Rp∗1) = cN .
(11)

Therefore, we can easily test for spanning by checking whether the portfolios of R1 that best

mimic both the safe asset and the stochastic discount factor continue to do so when we also

consider the assets in R2.

If hR1i and hRi only share the same mean representing portfolio, and p∗ and p+ are not

orthogonal, then the two RMVF’s are tangent at the point that corresponds to R+. In contrast,

the two SMVF’s will have no common point, but they will share the asymptotes, and the

location of the global minimum (see Figure 1). On the other hand, if hR1i and hRi only share

the same cost representing portfolio, then R∗ and p∗ will be the common elements of the frontiers

generated from R1 alone, and the ones generated from R (see Figure 2). Thus, if we add both

conditions, the old and new frontiers will be equal.

Given the moments in (11), we could perform a spanning test on the basis of the overidentified

system of moment conditions

E

⎛⎜⎜⎜⎝
RR01φ

+
1 − ν

RR01φ
∗
1 − cN

R− ν

⎞⎟⎟⎟⎠ = E

⎡⎣ hV (R;φ1,ν)
hM(R;ν)

⎤⎦ = E [gU(R;φ1,ν)] = 0,

7A third, and last, possibility is that the original and extended frontiers touch at a single point. Although
it is common in the literature to refer to this situation as “intersection”, we prefer to use the word “tangency”
because the frontiers are never secant to each other, as the word “intersection” may suggest. We discuss this case
in detail in Peñaranda and Sentana (2004).
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where we have defined φ1 as (φ
+0
1 ,φ∗01 )

0 and added N estimating functions for the generally

unknown vector of expected returns ν. Unfortunately, there is a singularity that precludes the

use of standard GMM methods:

Lemma 1 Let ΠU (φ1) = [
¡
−φ∗01 ,00N2

¢
,
¡
φ+01 ,00N2

¢
,00N ]

0 and mU (φ1,ν1) = φ∗01 ν1 − φ+01 cN1.
Then,

Π0U (φ1)gU (R;φ1,ν) = mU (φ1,ν1) ∀R and ∀φ1.
Hence Π0U(φ1)gU (R;φ1,ν) = 0 ∀R if and only if mU (φ1,ν1) = 0.

Given that the true parameters will satisfy mU (φ
0
1,ν

0
1) = 0 in view of (11), this lemma

implies that the rank of the asymptotic covariance matrix of
√
T ḡUT (φ

0
1,ν

0) will be 3N − 1

instead of 3N . In this case, in fact, the estimating functions gU (R;φ1,ν) satisfy (8), which

means that ST (θ) in (5) will be singular regardless of θ. As we mentioned in the previous

section, though, most empirical researchers will instead use ST (θ) in (4), which will not be

singular unless θ satisfies mU (φ1,ν1) = 0. In this sense, note that all parameter values along

this implicit manifold satisfy a well known property of the uncentred representing portfolios,

namely

E (p∗1) = E
¡
p∗1p

+
1

¢
= C

¡
p+1
¢
.

Our optimal GMM procedure will combine the equality restriction φ∗01 ν1 −φ+01 cN1 = 0 with

a generalised inverse to optimally deal with the singularity in Lemma 1, so that under the

null of spanning the resulting J test will have 2N2 degrees of freedom. It turns out that in

this particular example our optimal procedure implicitly transforms the estimating functions

gU(R;φ1,ν) into a smaller system of estimating functions in which one can apply standard (i.e.

non-singular) optimal GMM procedures:

Proposition 2 1. The J test based on the moment conditions E [gU (R;φ1,ν)] = 0 is as-
ymptotically equivalent under the null of spanning and sequences of local alternatives to
the J test based on the reduced set of moment conditions

E

µ
RR01φ

+
1 −R

RR01φ
∗
1 − cN

¶
= E [hU (R;φ1)] = 0. (12)

2. Both tests numerically coincide if we use CU-GMM for a specific choice of HAC estimator.

The main advantage of two-step GMM in this context is that the linearity of the estimating

equations (12) in φ1 gives rise to closed form expressions for a fixed weighting matrix ST (φ1T ).

And although the choice of initial consistent estimator φ̇1T does not affect the asymptotic

distribution of two-step GMM estimators up to Op(T
−1/2) terms, there is some Monte Carlo
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evidence suggesting that their finite sample properties can be negatively affected by an arbitrary

choice of initial weighting matrix such as the identity (see e.g. Kan and Zhou (2001)). In

contrast, CU-GMM (12) induces a non-linearity in the GMM objective function, which highlights

the need for good initial values.

For those reasons, we propose a computationally simple intuitive estimator of φ1 that is

always consistent, but which would become efficient for a data generating process that guarantees

the compatibility of mean-variance preferences with expected utility maximisation regardless of

investors’ preferences:8

Lemma 2 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ, and
bounded fourth moments, then the linear combinations of the moment conditions in (12) that
provide the most efficient estimators of φ+1 and φ

∗
1 under spanning will be given by

E

µ
R1R

0
1φ

+
1 −R1

R1R
0
1φ
∗
1 − cN1

¶
= 0,

so that φ̇
+
1T = Γ̂

−1
11T ν̂1T and φ̇

∗
1T = Γ̂

−1
11T cN1 , where ν̂1T = T−1

PT
t=1R1t is the sample mean

and Γ̂11T = T−1
PT

t=1R1tR
0
1t the sample second moment matrix of R1.

Intuitively, this means that under those circumstances the blocks involving R1 exactly iden-

tify the parameters φ∗1 and φ
+
1 , while the blocks corresponding to R2 provide the 2N2 overiden-

tification restrictions to test. Although the elliptical family is rather broad (see e.g. Fang, Kotz

and Ng (1990)), and includes the multivariate normal and t distribution as special cases, it is

important to stress that φ̇
+
1T and φ̇

∗
1T will remain consistent under H0 even if the assumptions

of serial independence and ellipticity are not totally realistic in practice, unlike the semipara-

metric estimators used by Vorkink (2003), or the parametric estimators studied by Amengual

and Sentana (2010).

4.2 Centred cost and mean representing portfolios

As we discussed in section 2.1, in the standard situation in which the SMVF and RMVF are

non-degenerate hyperbolas, we can define an alternative pair of mean and cost representing port-

folios (3) in terms of central moments, which also span both mean variance frontiers. Therefore,

another rather natural way to test for spanning that is not tied down to the specific properties

of either frontier consists in studying whether these portfolios are common to the linear spans

hR1i and hRi. In particular, if p∗∗1 and p++1 denote the centred cost and mean representing

8See Chamberlain (1983) and Owen and Rabinovitch (1983).
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portfolios corresponding to hR1i then mean-variance spanning of R by R1 is equivalent to

cov(R,p++1 ) = ν,

cov(R,p∗∗1 ) = cN .
(13)

The graphical implication of sharing the centred mean representing portfolio has already

been explained in section 4.1 in terms of R+ when p∗ and p+ are not orthogonal, because p++ is

proportional to p+ (see Figure 1). In contrast, the reduced and expanded RMVF’s will share the

minimum variance return R∗∗ if p∗∗ = p∗∗1 , while the original and extended SMVF’s will share

mMV (0), which is the value at the origin (see Figure 3). Hence, if we add both conditions, it is

once more clear that the original and expanded frontiers must be equal.

Given the moments in (13), we can perform a spanning test on the basis of the alternative

system of overidentified moment conditions:

E

⎡⎢⎢⎢⎣
(R− ν)(R1 − ν1)0ϕ+1 − ν

(R− ν)(R1 − ν1)0ϕ∗1 − cN

R− ν

⎤⎥⎥⎥⎦ = E [gC(R;ϕ1,ν)] = 0, (14)

where we have again added N estimating functions for the vector of expected returns ν, and

defined ϕ1 as (ϕ
+0
1 ,ϕ∗01 )

0. Unfortunately, this system is also singular:

Lemma 3 Let ΠC(ϕ1) = [(−ϕ∗01 ,00N2), (ϕ
+0
1 ,00N2),0

0
N ]
0 and mC(ϕ1,ν1) = ϕ∗01 ν1 − ϕ+01 cN1.

Then,
Π0C(ϕ1)gC (R;ϕ1,ν) = mC(ϕ1,ν1) ∀R and ∀φ1.

Hence Π0C(ϕ1)gC (R;ϕ1,ν) = 0 ∀R if and only if mC(ϕ1,ν1) = 0.

Given that the true parameters will satisfy mC(ϕ
0
1,ν

0
1) = 0 in view of (13), this lemma

implies that the rank of the asymptotic covariance matrix of
√
T ḡCT (ϕ

0
1,ν

0) is also 3N − 1

instead of 3N . As in the case of the uncentred representing portfolios discussed in the previous

subsection, the estimating functions gC(R;φ1,ν) also satisfy (8), which means that ST (θ) will

be singular regardless of θ. But again, most empirical researchers will use ST (θ) instead, which

will not be singular unless θ satisfies mC(ϕ1,ν1) = 0. In this sense, note that all parameter

values along this implicit manifold satisfy the well known property of the centred representing

portfolios

E (p∗∗1 ) = cov
¡
p∗∗1 , p++1

¢
= C

¡
p++1

¢
.

Our optimal GMM procedure will again combine the equality restriction ϕ∗01 ν1−ϕ+01 cN1 = 0

with a generalised inverse to optimally deal with the singularity in Lemma 3, so that under
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the null of spanning the resulting J test will also have 2N2 degrees of freedom. However, the

non-linearity in parameters of the moment conditions (14) implies that in this case we cannot

transform the problem in a smaller set of non-singular moment conditions. Nevertheless, we can

still simplify the computations by concentrating ν2 out of the criterion function:

Proposition 3 1. The J test based on the singular moment conditions E [gC(R;ϕ1,ν)] = 0
is asymptotically equivalent under the null of spanning and local alternatives to the J test
based on the singular moment conditions

E

⎡⎣ R(R1 − ν1)0ϕ+1 −R
R(R1 − ν1)0ϕ∗1 − cN

R1 − ν1

⎤⎦ = E

∙
hC(R;ϕ1,ν1)
hM(R1;ν1)

¸
= E [fC(R;ϕ1,ν1)] = 0. (15)

2. Both tests numerically coincide if we use CU-GMM for a specific choice of HAC estimator.

Since the optimal GMM procedure in section 3 applied to (15) imposes the equality restriction

ϕ∗01 ν1 − ϕ+01 cN1 = 0, we will effectively pin down one of the parameters in (ϕ1,ν1) given the

others. As for the remaining parameters, we will use a consistent estimator of a generalised

inverse of the asymptotic covariance matrix of
√
T f̄CT (ϕ

0
1,ν

0
1), say SC(ϕ

0
1,ν

0
1), which effectively

eliminates the singular linear combination. As discussed in that section, though, in order to

obtain a consistent estimator of S−C(ϕ
0
1,ν

0
1), we need a consistent estimator of SC(ϕ

0
1,ν

0
1) that

is singular in finite samples. The following result justifies an obvious first-step estimator for

two-step GMM, which can also be used as initial condition for CU-GMM:

Lemma 4 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ, and
bounded fourth moments, then the linear combinations of the moment conditions in (15) that
provide the most efficient estimators of φ+1 and φ

∗
1 under spanning will be given by

E

⎡⎣ R1(R1 − ν1)0ϕ+1 −R1R1(R1 − ν1)0ϕ∗1 − cN1
R1 − ν1

⎤⎦ = 0,
so that ν̄1T = ν̂1T , ϕ̄

+
1T = Σ̂

−1
11T ν̂1T and ϕ̄

∗
1T = Σ̂

−1
11T cN1 , where Σ̂11T = Γ̂11T − ν̂1T ν̂01T is the

sample covariance matrix of R1.

Intuitively, this means that under those circumstances, the blocks involving R1 exactly iden-

tify ν1, ϕ+1 and ϕ
∗
1, while the blocks corresponding to R2 provide the 2N2 testable restrictions.

But note again that ϕ̄+1T and ϕ̄
∗
1T will remain consistent under H0 even if the assumptions of

serial independence and ellipticity are not totally realistic in practice. Note also that the first-

step estimator defined in Lemma 4 does indeed guarantee that SC(ϕ̄1T , ν̄1T ) will be singular

because the linear combination defined in Lemma 3 only involves those blocks under the null of

spanning, and ϕ̄+01T cN1 − ϕ̄∗01T ν̄1T = 0.
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4.3 Regression tests for spanning

The centred and uncentred representing portfolios constitute rather natural choices for

testing for mean-variance spanning. However, there are infinitely many more pairs of portfolios

that could be used for the same purposes, because the two fund spanning property of both

frontiers does not depend on the particular funds used.

Building on Jobson and Korkie (1982), Gibbons, Ross and Shanken (1989) and Huberman

and Kandel (1987) showed that in mean-standard deviation space, the RMVF generated by R1

and R coincide at the point of tangency with a ray that starts from (0, c−1i ) if and only if the

intercepts in the multivariate regression of (R2−c−1i cN2) on a constant and (R1−c−1i cN1) are all

0.9 Consequently, we can implement the corresponding tangency test by means of the following

set of overidentified moment conditions:

E

⎡⎣⎛⎝ 1

R1 − c−1i cN1

⎞⎠⊗ £(R2 − c−1i cN2)−Bi(R1 − c−1i cN1)
¤⎤⎦ = E[hJ(R;bi)] = 0,

where bi = vec(Bi).
Therefore, a rather natural way to test for spanning in the RMVF is to test if there is

simultaneous tangency at two points. Specifically, let c−1i and c−1ii , with ci 6= cii, denote two

arbitrary expected returns on the shadow safe asset. Then, a spanning test can be based on the

2N2(N1 + 1) moment conditions:

E

⎡⎣ hJ(R;bi)

hJ(R;bii)

⎤⎦ = E[hL(R;bi,bii)] = 0. (16)

However, as pointed out by Marín (1996), the asymptotic covariance matrix of the sample

analogues of (16) is singular under the null of spanning. More explicitly:

Lemma 5 Let

ΠL(bi,bii) =

µ
Φ0−1i ⊗ IN2
−Φ0−1ii ⊗ IN2

¶
and

mL(bi,bii) =

∙
−c−1ii (BiicN1 − cN2) + c−1i (BicN1 − cN2)

bii − bi

¸
,

where

Φi =

µ
1 00

−c−1i cN1 IN1

¶
9 If we regard c−1i as the expected return of a zero-beta frontier portfolio orthogonal to the tangency portfolio

made up of elements of R1 only, then we can interpret the regression intercepts as the so-called Jensen’s alphas
in the portfolio evaluation literature. These coefficients should all be 0 if the tangency portfolio of R1 is really
mean-variance efficient with respect to R (see De Roon and Nijman (2001)).
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is a known full rank square matrix of order N1 + 1 whose only role is to linearly transform the
non-constant regressors from

¡
R1 − c−1i cN1

¢
to R1, with Φii similarly defined. Given that

Π0L(bi,bii)hL(R;bi,bii) =

=

µ
1
R1

¶
⊗ [(Bii −Bi)R1 + c−1i (BicN1 − cN2)− c−1ii (BiicN1 − cN2)],

then Π0L(bi,bii)hL(R;bi,bii) = 0 ∀R if and only if mL(bi,bii) = 0.

Since mL(bi,bii) is 0 at the true values, the previous lemma implies that the rank of the

asymptotic covariance matrix of h̄LT (b0i ,b
0
ii) will be N2(N1 + 1) instead of 2N2(N1 + 1). In

this sense, the singularity in Lemma 5 shows important differences with respect to those in

Lemmas 1 and 3. First, there are multiple singularities, in fact half of the moments. Second,

the manifold imposes two sets of constraints on the matrices of slope coefficients of the two

multivariate regressions under the null of spanning, namely Bii = Bi = B and cN2 = BcN1 .

Third, and more importantly, Π0L(bi,bii)hL(R;bi,bii) is generally a non-constant function of

R1 over the parameter space, and hence even the centred estimator of the asymptotic covariance

matrix ST (θ) will usually have full rank. But even if we impose that Bii = Bi = B to make

Π0L(bi,bii)hL(R;bi,bii) constant, which will guarantee a singular ST (θ), ST (θ) will not be

singular unless we add the additional set of equality restrictions BcN1 = cN2 . In addition, note

that Π0L(bi,bii)hL(R;bi,bii) will not coincide with mL(bi,bii) even when both b’s are equal.

Our optimal GMM procedure applied to (16) will combine the equality restrictions bi = bii =

b and BcN1 = cN2 with a generalised inverse to optimally deal with the singularity in Lemma 5,

so that under the null of spanning the resulting J test will have 2N2 degrees of freedom. But as

in the case of uncentred representing portfolios, it turns out that in this particular example our

optimal procedure implicitly transforms the estimating functions hL(R;bi,bii) into a smaller

system of estimating functions in which one can apply standard (i.e. non-singular) optimal

GMM procedures:

Proposition 4 1. The J test based on the moment conditions (16) is asymptotically equiva-
lent to the J test based on the N2(N1 + 1) moment conditions

E

⎧⎨⎩
⎛⎝ 1

R10
R11 −R10cN1−1

⎞⎠⊗ ∙ (R2 −R10cN2)−
−B1(R11 −R10cN1−1)

¸⎫⎬⎭ = E[hH(R;b1)] = 0, (17)

under the null of spanning and local alternatives for any choice of reference portfolio R10,
where we have partitioned B = (b0,B1) and cN1 = (1, c0N1−1)

0 conformably with R1 =
(R10,R

0
11)

0, and b1 = vec(B1).

2. Both tests numerically coincide if we use CU-GMM for a specific choice of HAC estimator.
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Therefore, the optimal combination of two GMM-based return mean variance efficiency tests

at two separate points reduces to the GMM version of the spanning test in Huberman and

Kandel (1987) discussed by Ferson, Foerster and Kim (1993). In fact, those authors derived

the F version of the likelihood ratio test,10 whose finite sample distribution is exact under the

assumption that the distribution of R2t given R1s (s = 1, . . . , T ) is multivariate normal with

linear mean and constant covariance matrix.

In practice, we need an initial consistent estimator of b1 either to calculate the optimal

weighting matrix in a two-step GMM procedure, or to use it as a good initial condition for

CU-GMM. Our next lemma suggests some sensible ways of doing so:

Lemma 6 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ, bounded
fourth moments, and coefficient of multivariate excess kurtosis κ < ∞, then the linear combi-
nations of the moment conditions (17) that provide the most efficient estimators of b1 under
spanning will be given by

E

½∙
(R11 −R10cN1−1)
+κ(ν11 − ν10cN1−1)

¸
⊗
∙

(R2 −R10cN2)−
−B1(R11 −R10cN1−1)

¸¾
= 0. (18)

Since ν and κ are unknown, we could set κ to 0, which is its value under Gaussianity, in which

case the first-step estimator of B1 will come from the multivariate regression of (R2-R10cN2)

on (R11-R10cN1−1). Alternatively, we could use the sample analogues of ν and κ to obtain an

IV estimator of B1 from (18).11 In either case, such first-step estimators will remain consistent

under the null of spanning even if those assumptions are not totally realistic in practice.

5 Comparisons of spanning tests

So far, we have introduced two new separate families of spanning tests: centred and uncentred

representing portfolios. We also encountered a third separate family of spanning tests based on

regressions. Now we extensively compare the different tests.

5.1 Equivalence of the parametric restrictions

As we have already seen, the parametric restrictions involved in the novel testing procedures

proposed in sections 4.1 and 4.2 simply mean that the centred or uncentred cost and mean

representing portfolios of R depend exclusively on R1. Given that the SMVF is spanned by

10However, both Peñaranda (1999) and Kan and Zhou (2001) noticed a typo in their paper, whereby a square
root is missing in the ratio of determinants of the residual variances.
11 It is trivial to compute the sample analogue of the coefficient of multivariate excess kurtosis of any random

vector R, which is defined as κ = E[(R− ν)0Σ−1(R− ν)]2/[N(N + 2)]− 1 (see Mardia (1970)).
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either pair of representing portfolios, it is straightforward to show that those restrictions are

equivalent to the parametric restrictions tested by De Santis (1993, 1995), Bekaert and Urias

(1996), and Kan and Zhou (2001), which amount to the hypothesis that the SMVF of R1 is also

valid for R2. In turn, Ferson (1995) and Bekaert and Urias (1996) showed that these SMVF

parametric restrictions are equivalent to the restrictions tested by Huberman and Kandel (1987),

which can be interpreted as saying that each element ofR2 can be written as a unit cost portfolio

of R1, plus an orthogonal arbitrage portfolio with zero mean.12

These equivalences can be seen more formally if we write:

p+ = p+1 + (1 + ν 01Σ
−1
11 ν1)

−1a0Λ−1v,

p∗ = p∗1 + (cN2 −CcN1)
0Λ−1v,

p++ = p++1 + (1 + ν01Σ
−1
11 ν1)

−1a0Ω−1w,

p∗∗ = p∗∗1 + (cN2 −Bc0N1)Ω−1w,

(19)

where v = R2 − CR1, C = Γ21Γ
−1
11 and Λ = Γ22 − Γ21Γ−111 Γ021 are the residual, slope and

residual second moment, respectively, of the least squares projection of R2 on hR1i, while

w = R2 − a−BR1, a = ν2 −Bν1, B = Σ21Σ−111 and Ω = Σ22 −Σ21Σ−111 Σ021 are the residual,

intercept, slope and residual variance, respectively, of the projection of R2 on h1,R1i. From

here, it immediately follows that

p+ = p+1 ⇔ p++ = p++1 ⇔ a = 0,

p∗ = p∗1 ⇔ cN2 = CcN1 ,

p∗∗ = p∗∗1 ⇔ cN2 = BcN1 .

Further, if two of these parametric restrictions are satisfied, so will be the third one, as

cN2 −BcN1 = (cN2 −CcN1) +
¡
ν01Σ

−1
11 cN1

¢
a/(1 + ν 01Σ

−1
11 ν1).

5.2 Equivalence of the tests

The fact that the restrictions to test are equivalent does not necessarily imply that the

corresponding GMM-based test statistics will be equivalent too. This is particularly true in the

case of the regression versions of the tests, in which the number of moment and parameters

involved is different, although the number of degrees of freedom of the overidentification tests

is the same. The purpose of this subsection is to investigate the asymptotic and finite sample

12Kan and Zhou (2001) also linked the constraints in Huberman and Kandel (1987) to R+ and R∗∗, although
they did not relate those returns to representing portfolios.
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relationships between the overidentification tests previously discussed under the null of spanning

and sequences of local alternatives. The following proposition provides a very precise answer:

Proposition 5 1. The J tests based on each of the following sets of moment conditions:

E[hU (R;φ1)] = 0,

E[fC(R;ϕ1,ν1)] = 0,

E[hH(R;b1)] = 0,

are asymptotically equivalent under the null of spanning and compatible sequences of local
alternatives.

2. All three tests numerically coincide if we use CU-GMM for a specific choice of HAC esti-
mator.

Therefore, there is no basis to prefer one test to another from this perspective because

either all the statistics asymptotically converge to exactly the same random variable, or they

are numerically equal to begin with if we use CU-GMM. In fact, as we mentioned before, such

a numerical equivalence holds with other single-step estimators such as empirical likelihood or

exponentially-tilted methods. Once again, though, it is important to emphasise the need to

properly define overidentification tests in the presence of singularities to obtain our equivalence

results.

Note that our asymptotic result is valid as long as the asymptotic distributions of the different

tests are standard, which happens under fairly weak assumptions on the distribution of asset

returns, as we saw in section 3. For obvious reasons, our numerical equivalence result does not

depend either on the true return distribution.

In order to provide some intuition for the numerical equivalence between all the CU-GMM

J tests that we have discussed, imagine that for estimation purposes we assumed that the joint

distribution of asset returns is i.i.d. multivariate normal. In that context, we could test for

spanning by means of the LR test, because the null of spanning would allow us to parametrise

ν2 and Σ21 as restricted non-linear functions of ν1 and Σ11. We could then factorise the joint

log-likelihood function of R1 and R2 as the marginal log-likelihood of R1, whose parameters

would be unrestricted, and the conditional log-likelihood of R2 given R1. As a result, the LR

version of the original Huberman and Kandel (1987) test would be numerically identical to the

LR test in the joint system irrespective of whether we parametrise the joint covariance matrix as

Σ or Γ− νν0. The CU-GMM overidentification test, which implicitly uses the Gaussian pseudo-

scores as influence functions, inherits the invariance of the LR test. The advantage, though, is
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that we can make it robust to departures from normality, serial independence or conditional

homoskedasticity.

5.3 Extension to SMVF spanning tests

Let us turn now to two-point GMM-based spanning tests in the SMVF, first developed by

De Santis (1993, 1995) and Bekaert and Urias (1996). In this context, the null of spanning is

simply mMV (c) = mMV
1 (c) for every c, where mMV

1 (c) is the element of the SMVF for R1 for

which E[mMV
1 (c)] = c. We can perform a spanning test by choosing two non-negative scalars

ci 6= cii and adding moment conditions to estimate ν1, so that

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R[ci + (R1 − ν1)0β1i]− cN

R[cii + (R1 − ν1)0β1ii]− cN

R1 − ν1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0.

Such a system is a simple transformation and reparametrszation of (15) since

£
R(R1 − ν1)0ϕ∗1 − cN

¤
− ci

£
R(R1 − ν1)0ϕ+1 −R

¤
= R(R1 − ν1)0

£
ϕ∗1 − ciϕ

+
1

¤
+Rc− cN = R[c+ (R1 − ν1)0β1i]− cN .

As a result, the CU-GMM overidentification test that optimally takes into account the singularity

of the above system will be numerically identical in both systems regardless of the values of ci

and cii chosen by the researcher, while other GMM variants will lead to asymptotically equivalent

tests under the null and sequences of local alternatives. Note, though, that there are no finite

values of ci and cii for which the system above reduces to fC(R;ϕ1,ν1), which reflects that p
++
1

does not belong to the SMVF. In fact, Figures 1 and 3 illustrate that we can link p∗∗1 to mMV
1 (0)

and p++1 to an unbounded c in mMV
1 (c), in the sense that

lim
c→±∞

E

"µ
mMV
1 (c)

c
−
¡
1 +E

¡
p++1

¢
− p++1

¢¶2#
= 0,

so in effect (15) is choosing the limits of the admissible range of expected values of SDF as

opposed to two arbitrary interior points.

More recently, Kan and Zhou (2001) discuss an alternative two-point spanning test for the

SMVF frontier. Specifically, they suggest to reparametrise mMV (c) in terms of α (see section

2.2) instead of c. Consequently, they rely on the system

E

⎡⎣ R(αi +R
0
1γ1i)− cN

R(αii +R
0
1γ1ii)− cN

⎤⎦ = 0,
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where αi 6= αii are two scalars chosen by the researcher.

Such a system is a simple transformation and reparametrszation of (12) since

£
RR01φ

∗
1 − cN

¤
− αi

£
RR01φ

+
1 −R

¤
= RR01(φ

∗
1 − αiφ

+
1 ) +Rα− cN = R(α+R

0
1γ1i)− cN ,

and hence the CU-GMM overidentification test will also be numerically identical in both systems

regardless of the values of αi and αii chosen by the researcher. Once again, though, there are

no finite values of αi and αii for which the system above reduces to hU (R;φ1), which reflects

that p+1 does not belong to the SMVF either. In fact, Figure 1 illustrates that p
+
1 corresponds

to an unbounded α in mMV
1 , in the sense that

lim
α→±∞

E

"µ
mMV
1

α
−
¡
1− p+1

¢¶2#
= 0.

6 Empirical Application

We consider six portfolios of US stocks sorted by size (small and large) and book-to-market

(high, medium and low). We will refer to those six portfolios as SL, SM, SH, BL, BM and BH,

which define the return vector R. We want to study if the market portfolio, MK, and the two

Fama-French portfolios that capture the size and value effects, SMB (long in small capitalisation

stocks and short in big ones) and HML (long in high book-to-market stocks and short in low

ones), respectively, span the same return and SDF mean-variance frontiers as the aforementioned

six portfolios. Therefore, in our notation, R1 will be composed of MK, SMB and HML, while R2

is composed of SM, SH and BM.13 We use monthly data from 1952 to 2007 (670 observations)

from Ken French’s web page; see Fama and French (1993) for further details. Hence, our sample

starts right after the 1951 Treasury-Fed accord whereby the latter stopped its wartime pegging

of interest rates. We systematically work with net returns, (i.e. gross returns minus 1), to avoid

numerical problems, and adjust the moment conditions accordingly.

Figure 4 shows the corresponding mean-variance frontiers. To see whether the observed

differences are statistically significant, we compute CU-GMM J tests of spanning using 0, 5

and 10 lags in the Newey-West estimator of the long-run covariance matrix of the moment

13We make the joint span of R1 and R2 equivalent to R by using the mimicking portfolio of MK, which has
correlation 0.995 with the actual MK. Our results are not affected by this choice.
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conditions.14 As Proposition 5 shows, for a given lag length the statistics are numerically

identical across the different tests studied. Table 1 shows that spanning tests strongly reject the

null hypothesis. In turn, Table 1 also shows spanning tests for the same R1 when we add the

return of each of the six portfolios at a time to shed more light on the sources of the rejection.

In this sense, we find strong evidence against the null for all portfolios except SH and BM.

Therefore, we can conclude that a mean-variance investor who is fully invested in US stocks

cannot fully reproduce the mean-variance frontiers generated by SL, SM, SH, BL, BM and BH

by combining only the two Fama-French portfolios with the market. Furthermore, we can also

conclude that there is information about SDF’s in those six portfolios that is not fully captured

by the US aggregate stock market index and the Fama-French size and value factors.

7 Conclusions

We have provided a unifying approach to test for spanning in the return and stochastic

discount factor mean-variance frontiers at three different levels: a) we propose novel testing

procedures based on representing portfolios which are not tied down to the properties of either

frontier and have a direct economic interpretation, b) we show the asymptotic equivalence of

our proposed tests to the extant spanning tests under the null and local alternatives, and c)

we prove that by using a single-step GMM procedure such as CU-GMM we can make all the

different overidentification tests numerically identical, so one could argue that effectively there

is a single spanning test.

The equivalence of the different tests is rather relevant in empirical finance in view of the

controversy between regression- and SDF-based asset pricing tests. In a simplified context of

i.i.d normal returns and factors, Jagannathan and Wang (2002) formally show that the usual

beta (regression) and SDF methods lead to asymptotically equivalent risk premia estimators

and specification tests. In fact, in a follow up paper (see Peñaranda and Sentana (2010)) we

prove the more subtle result that the application to both the regression and SDF approaches of

single-step GMM methods, including CU-GMM, gives rise to numerically identical estimates of

prices of risk, pricing errors, Jensen’s alphas and overidentifying restrictions tests irrespective of

the validity of the asset pricing model. Therefore, one could again argue that there is a single

method to empirically evaluate asset-pricing models too.

14Although we use ST (θ) following standard empirical practice, we find qualitatively similar results withST (θ).
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Several versions of spanning tests give rise to a non-standard GMM set up in which the

influence functions have a singular asymptotic second moment matrix along an implicit manifold

in the parameter space that contains the true value. For that reason, we have extended the theory

of optimal GMM inference to deal with those non-trivial situations.

In addition, for the benefit of practitioners, we also suggest sensible consistent first-step

parameter estimators in spanning tests that can be used either as initial values for single-step

GMM procedures, or to obtain consistent estimates of the optimal GMM weighting matrices

with potentially better finite sample properties. The choice of first-step estimators is particularly

important in our singular GMM set-up to avoid asymptotic discontinuities in the distributions

of two-step estimators and tests.

We apply our testing procedures to study if the market portfolio and the two Fama-French

portfolios that capture the size and value effect span the same return and SDF mean-variance

frontier as six portfolios sorted by size and book-to-market. Given that spanning is clearly

rejected, a mean-variance investor who is fully invested in US stocks would be worse off if her

choice was constrained to strategies that only combine the size and value mimicking portfolios

with the market. Equivalently, our results indicate that those three funds do not fully capture

the information about SDF’s in the six size and book-to-market sorted portfolios.

There are three situations in which the structure of the RMVF and SMVF implies that

spanning will be achieved if the original and expanded frontiers share a single risky portfolio.

This will happen when a safe asset is included in R1, only arbitrage portfolios are available, and

finally when all expected returns are equal. For the sake of brevity, these three special cases

are separately discussed in a companion paper (see Peñaranda and Sentana (2004)). For the

same reason, our analysis has not involved moments of order higher than the second, market

frictions, or positivity restrictions on the discount factor. The first issue is studied in Snow

(1991). Short-sales constraints and transaction costs are dealt with by De Roon, Nijman, and

Werker (2000). De Roon, Nijman, and Werker (1997) also considered RMVF spanning under

more general expected utility functions (see also Gouriéroux and Monfort (2005)), as well as

non-traded assets. In this sense, it would be interesting to develop a utility-based measure of

the importance of the additional assets that would complement our spanning tests.

Importantly, spanning tests based on representing portfolios generalise in a natural way to

situations in which we want to consider not only a few selected managed portfolios but every
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conceivable active (i.e. dynamic) portfolio strategy because the distribution of returns is pre-

dictable (see Hansen and Richard (1987), Gallant, Hansen and Tauchen (1990) and Peñaranda

and Sentana (2008) for the analysis of mean-variance frontiers with active strategies). The exten-

sion of our analysis to the case of conditioning information that can be adequately summarised

by means of a multinomial variable is straightforward. Moreover, such an approach can provide

the basis for a formal semiparametric procedure that deals with the case of multiple continu-

ous conditioning variables, which we leave for future research (see Chen (2005) for a survey of

the recent literature on sieves methods). In such a context, though, we cannot generally apply

standard GMM methods because both moments and parameters are infinite dimensional.

Spanning tests are partly related to mutual fund separation. As is well known, the vector R1

is separating relative to the investment universe R if the optimal portfolio of each risk adverse

agent can be described as a portfolio of R1 alone. In fact, the only additional restriction with

respect to the spanning constraints in a regression context is that the residual of the theoretical

regression of R2 on R1 must not only be orthogonal to R1, but also mean independent (see

Proposition 2 in Huberman and Kandel (1987), which adapts the original results by Ross (1978)

to the spanning case). However, testing for mean independence also involves conditional moment

restrictions, which is again qualitatively different from a standard parametric test. Again we

leave this issue for further research.

Finally, it is worth mentioning that our singular GMM framework can be applied to other

relevant situations, such as mean-variance efficiency tests when the reference portfolio is a linear

combination of the available assets. In addition, it can also be applied to dynamic models in

which the singularities appear in the long-run covariance matrix but not in the contemporaneous

one. Those applications constitute other interesting avenues for further research.
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Appendix

A Proofs of Propositions

Proposition 1:

Given the spectral (eigenvalue-eigenvector) decomposition of S(θ0) in (10), all its generalised

inverses, which must satisfy SS−S = S, will be of the form

S−(θ0) = [ P Q ]

⎛⎝ Λ−1 ∆PQ

∆QP ∆QQ

⎞⎠⎡⎣ P0

Q0

⎤⎦ ,
with ∆PQ, ∆PQ and ∆QQ arbitrary (see e.g. Rao and Mitra (1971)).

For notational simplicity, but without loss of generality, we shall work with the alternative

k parameters α (s× 1) and β ((k − s)× 1)

( α0 β0 ) =M
0(θ),

where the first s entries of M(θ) are such that α =m(θ). We can always choose M(θ) to be

a regular transformation (i.e. a C1-diffeomorphism) on an open neighbourhood of θ0 in view of

Assumptions 1 and 2 so that its inverse is continuously differentiable (see e.g. Fleming (1977,

p. 143)).

Let us denote by l[M(θ)] = θ the corresponding inverse transformation, and its Jacobian by

L(α,β) =
∂l(α,β)

∂(α0,β0)
= [ Lα(α,β) Lβ(α,β) ].

We will impose the parametric restrictionsm(θ) = α = 0 by working with the smaller vector

of parameters β and the influence functions h [xt, l(0,β)]. The optimal GMM estimator is then

defined as

β̂T = argmin
β∈B

h̄0T [l(0,β)]S
−¡θ0¢ h̄

T
[l(0,β)] ,

where B ⊆ Rk−s, while the GMM estimator of θ will be θ̂T = l(0, β̂T ).

a) Given that [ P Q ] is an orthogonal matrix, andM(θ) is regular in an open neighbour-

hood of θ0, so that rank[L(0,β)] = k by the inverse function theorem, it follows that

rank[D(θ0)] = rank

⎡⎣ P0D(θ0)Lα(0,β) P0D(θ0)Lβ(0,β)

Q0D(θ0)Lα(0,β) Q0D(θ0)Lβ(0,β)

⎤⎦ = k. (A1)

Now, Assumption 1 implies that Π [l(0,β)]0
√
T h̄T [l(0,β)] converges in probability to zero

for all β in the neighbourhood of β0. Therefore, if we differentiate this random process with
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respect to β, and evaluate the derivatives at β0, the continuously differentiable character of

Π(θ), ht(θ) and l(0,β) at the true value imply that

{
√
T h̄T [l(0,β

0)]⊗ Is}
∂vec{Π0[l(0,β0)]}

∂β
+Π0[l(0,β0)]

√
T
∂h̄T [l(0,β

0)]

∂β

p→ 0

by the continuous mapping theorem, which a fortiori implies that

{h̄T [l(0,β0)]⊗ Is}
∂vec{Π0[l(0,β0)]}

∂β
+Π0[l(0,β0)]

∂h̄T [l(0,β
0)]

∂β

p→ 0

since T−1/2 is trivially o(1). But since the chain rule for first derivatives allows us to write the

previous expression as

{h̄T [l(0,β0)]⊗ Is}
∂vec{Π0[l(0,β0)]}

∂θ0
Lβ(0,β

0) +Π0[l(0,β0)]D̄T [l(0,β
0)]Lβ(0,β

0),

where D̄T (θ) = ∂h̄T (θ)/∂θ
0, our assumptions imply that

Π0[l(0,β0)]D[l(0,β0)]Lβ(0,β
0) = 0

in view of the fact that D̄T [l(0,β
0)]

p→ D[l(0,β0)] and h̄T [l(0,β0)]
p→ E[h(xt;θ

0)] = 0 by

definition of θ0.

Finally, given that Q must be a full-column rank linear transformation of Π(θ0) because

Q0S(θ0) = 0, we can also show that

Q0D(θ0)Lβ(0,β
0) = 0. (A2)

As a result, rank[P0D(θ0)Lβ(0,β0)] must indeed be k−s for (A1) to be true. Therefore, we have

shown that after imposing the restriction α = 0, the reduced moment conditions P0h̄T (l(0,β)

will first-order identify β at β0.

b) If h(xt;θ) satisfies the regularity conditions mentioned in the text, together with Assump-

tions 1 and 2, then we can easily prove that those regularity conditions will also be satisfied

by P0h[xt; l(0,β)] because the latter functions are a linear combination of the former, and the

transformation from θ to (α,β) is regular over an open neighbourhood of θ0. This fact, together

with property a), allows us to derive the asymptotic distribution of the infeasible optimal GMM

estimator of the transformed parameters β. Specifically, in large samples

√
T (β̂T − β0)

= −
£
L0β(0,β

0)D0(θ0)S−(θ0)D(θ0)Lβ(0,β
0)
¤−1

L0β(0,β)D
0(θ0)S−(θ0)

√
T h̄T

£
l(0,β0)

¤
+ op(1)

= −
£
L0β(0,β

0)D0(θ0)S+(θ0)D(θ0)Lβ(0,β
0)
¤−1

L0β(0,β
0)D0(θ0)S+(θ0)

√
T h̄T

£
l(0,β0)

¤
+ op(1),
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for any S−(θ0), because

L0β(0,β
0)D0(θ0)S−(θ0)D(θ0)Lβ(0,β

0)

= [ L0β(0,β
0)D0(θ0)P 0 ]

⎛⎝ Λ−1 ∆PQ

∆QP ∆QQ

⎞⎠⎡⎣ P0D(θ0)Lβ(0,β0)
0

⎤⎦
= L0β(0,β

0)D0(θ0)PΛ−1P0D(θ0)Lβ(0,β
0) = L0β(0,β

0)D0(θ0)S+(θ0)D(θ0)Lβ(0,β
0),

in view of Assumptions 1 and 2, and similarly

L0β(0,β
0)D0(θ0)S−(θ0)h̄T

£
l(0,β0)

¤
= [ L0β(0,β

0)D0(θ0)P 0 ]

⎛⎝ Λ−1 ∆PQ

∆QP ∆QQ

⎞⎠⎡⎣ P0h̄T £l(0,β0)¤
0

⎤⎦
= L0β(0,β

0)D0(θ0)PΛ−1P0h̄T
£
l(0,β0)

¤
= L0β(0,β

0)D0(θ0)S+(θ0)h̄T
£
l(0,β0)

¤
.

Therefore,

√
T (β̂T − β0)

d→ N (0,V) ,

V =
£
L0β(0,β

0)D(θ0)0S+(θ0)D(θ0)Lβ(0,β
0)
¤−1

.

We can use the standard delta method to show that the optimal GMM estimators of the

parameters of interest, θ, which will be given by θ̂T = l(0, β̂T ), will have the asymptotically

normal distribution
√
T (θ̂T − θ0) d→ N

£
0,Lβ(0,β

0)VL0β(0,β
0)
¤

whose covariance matrix is of rank k − s.

Similarly, the asymptotic covariance matrix of a GMM estimator that uses Υ as weighting

matrix but does not impose m(θ) = 0 is

£
D0(θ0)ΥD(θ0)

¤−1 · [D0(θ0)ΥS(θ0)ΥD(θ0)] ·
£
D0(θ0)ΥD(θ0)

¤−1
.

Our claimed optimality of θ̂T = l(0, β̂T ) depends on

£
D0(θ0)ΥD(θ0)

¤−1 · [D0(θ0)ΥS(θ0)ΥD(θ0)] ·
£
D0(θ0)ΥD(θ0)

¤−1 − Lβ(0,β0)VL0β(0,β0)
being positive semidefinite, which in turn requires that

D0(θ0)ΥS(θ0)ΥD(θ0)−
£
D0(θ0)ΥD(θ0)

¤
Lβ(0,β

0)VL0β(0,β
0)
£
D0(θ0)ΥD(θ0)

¤
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is positive semidefinite.

The result follows since this matrix is the asymptotic residual variance in the limiting least

squares projection of
√
TD0(θ0)Υh̄T (θ

0) on
√
TL0β(0,β

0)D0(θ0)S−(θ0)h̄T (θ
0). Regardless of

our generalised inverse choice,

lim
T→∞

V ar

⎡⎣ √
TD0(θ0)Υh̄T (θ

0)
√
TL0β(0,β

0)D(θ0)0S−(θ0)h̄T (θ
0)

⎤⎦=
=

⎡⎣ D0(θ0)ΥS(θ0)ΥD(θ0) D0(θ0)ΥD(θ0)Lβ(0,β
0)

L0β(0,β
0)D0(θ0)ΥD(θ0) V−1

⎤⎦ ,
where the only new object is the covariance term. The upper right covariance term follows from

D0(θ0)ΥS(θ0)S−(θ0)D(θ0)Lβ(0,β
0) = D0(θ0)ΥPP0D(θ0)Lβ(0,β

0)

because S(θ0)S−(θ0)D(θ0)Lβ(0,β0) = PP0D(θ0)Lβ(0,β
0) in view of Assumptions 1 and 2,

and

D0(θ0)ΥPP0D(θ0)Lβ(0,β
0) = D0(θ0)Υ[In −QQ0]D(θ0)Lβ(0,β0) = D0(θ0)ΥD(θ0)Lβ(0,β

0)

since the eigenvector matrix is orthogonal.

Finally, we can develop similar arguments to prove the efficiency of θ̂T = l(0, β̂T ) with

respect to a third estimator that uses Υ as weighting matrix but imposes m(θ) = 0, and a

fourth estimator that uses a generalised inverse S−(θ0) as weighting matrix but does not impose

m(θ) = 0. The asymptotic variance of the third estimator is£
L0β(0,β

0)D0(θ0)ΥD(θ0)Lβ(0,β
0)
¤−1 · [L0β(0,β0)D0(θ0)ΥS(θ0)ΥD(θ0)Lβ(0,β

0)]·£
L0β(0,β

0)D0(θ0)ΥD(θ0)Lβ(0,β
0)
¤−1

,

while the asymptotic variance of the fourth estimator is£
D0(θ0)S−(θ0)D(θ0)

¤−1
D0(θ0)S−(θ0)S(θ0)S−(θ0)D(θ0)

£
D0(θ0)S−(θ0)D(θ0)

¤−1
,

assuming D0(θ0)S−(θ0)D(θ0) has full rank (otherwise it will not even identify θ).

Straightforward algebra shows that any of those matrices minus Lβ(0,β0)VL0β(0,β
0) yields

a positive semidefinite matrix.

c) Our previous results imply that in large samples

√
T h̄T

h
l(0, β̂T )

i
=
√
T h̄T (θ

0) +D(θ0)Lβ(0,β
0)
√
T
³
β̂T − β0

´
+ op(1)

=
n
In −D(θ0)Lβ(0,β0)VL0β(0,β0)D0(θ0)PΛ−1P

0o√
T h̄T (θ

0) + op(1).
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If we define D = Λ−1/2P0D(θ0)Lβ(0,β0) then we can write the previous expression as
√
T h̄T

h
l(0, β̂T )

i
=
n
In −D(θ0)Lβ(0,β0)

£
D0D

¤−1D0Λ−1/2P0o√T h̄T (θ0) + op(1)

=
n
PΛ1/2 −D(θ0)Lβ(0,β0)

£
D0D

¤−1D0o√TΛ−1/2P0h̄T (θ0) + op(1)

= PΛ1/2
n
In−s −D

£
D0D

¤−1D0o√TΛ−1/2P0h̄T (θ0) + op(1).

Therefore, in large samples, the criterion function evaluated at the estimator and scaled by

T is

T h̄T

h
l(0, β̂T )

i
S−
¡
θ0
¢
h̄T

h
l(0, β̂T )

i
= z0T

n
In−s −D

£
D0D

¤−1D0o zT + op(1),

where zT =
√
TΛ−1/2P0h̄T (θ

0) is asymptotically distributed as a standard multivariate normal.

Given that the matrix
n
In −D [D0D]−1D0

o
is idempotent with rank (n− s)− (k − s) = n− k,

we finally obtain an asymptotic chi-square limiting distribution with n− k degrees of freedom.

d) Given that we impose the equality restriction m(θ) = 0, we will find that

√
T (θ̂T − θ̄T ) = op(1)

if and only if the same relationship holds for the underlying non-singular estimator, i.e. if

√
T{β̂T − β̄T} = op(1).

But since we have previously found that

√
T
³
β̂T − β0

´
= −

£
L0β(0,β

0)D0(θ0)S+(θ0)D(θ0)Lβ(0,β
0)
¤−1

L0β(0,β
0)D0(θ0)S+(θ0)

√
T h̄T

£
l(0,β0)

¤
+ op(1),

regardless of the choice of generalised inverse S−(θ0), the result follows. ¤

Proposition 2:

For the sake of brevity, we only prove the CU-GMM result, which in turn implies the GMM

result using standard arguments. The system

E

⎛⎜⎜⎜⎝
RR01φ

+
1 − ν

RR01φ
∗
1 − cN

R− ν

⎞⎟⎟⎟⎠
is numerically equivalent to the system

E

⎛⎜⎜⎜⎝
RR01φ

+
1 −R

RR01φ
∗
1 − cN

R− ν

⎞⎟⎟⎟⎠ =

⎛⎝ hU (R;φ1)

hM(R;ν)

⎞⎠ ,

33



because we are simply adding hM(R;ν) to the mean representing portfolio block. If we define

θ = (φ1,ν), and drop the T subscripts from the HAC estimator ST (θ) and its components, we

can decompose the joint long-run variance variance of the larger system as

S (θ) =

⎡⎣ SUU (φ1) S0MU (θ)

SMU (θ) SMM (ν)

⎤⎦ =
⎛⎝ I2N 0

BMU (θ) IN

⎞⎠⎡⎣ SUU (φ1) 0

0 ΩMM (θ)

⎤⎦⎛⎝ I2N B0MU (θ)

0 IN

⎞⎠ ,

where

BMU (θ) = SMU (θ)S
−1
UU (φ1) , ΩMM (θ) = SMM (ν)− SMU (θ)S

−1
UU (φ1)S

0
MU (θ) .

On this basis, we can transform hM(R;ν) into

gM(R;θ) = hM(R;ν)−BMU (θ)hU (R;φ1),

which is such that the long-run covariance matrix of (h0U (R;φ1),g
0
M(R;θ))⎡⎣ SUU (φ1) 0

0 ΩMM (θ)

⎤⎦
is block diagonal, with the singularity confined to the first N1 components of ΩMM (θ). The

advantage of a CU-GMM set-up is that the moment conditions E [h0U (R;φ1),h
0
M(R;ν)] = 0

and E [h0U (R;φ1),g
0
M(R;θ)] = 0 are numerically equivalent.

Focusing on the Moore-Penrose inverse without loss of generality, the CU-GMM criterion

with the transformed moment conditions can be additively decomposed into two components,

namely ⎛⎝ h̄UT (φ1)

ḡMT (θ)

⎞⎠0 ⎡⎣ SUU (φ1) 0

0 ΩMM (θ)

⎤⎦+⎛⎝ h̄UT (φ1)

ḡMT (θ)

⎞⎠
= h̄UT (φ1)

0S−1UU (φ1) h̄UT (φ1) + ḡMT (θ)
0Ω+MM(θ)ḡMT (θ).

The first component only depends on φ1, and coincides with the optimal criterion that

simply relies on the moment conditions E [hU (R;φ1)] = 0. Hence both the joint criterion and

the simple criterion h̄UT (φ1)
0S−1UU (φ1) h̄UT (φ1) will provide the same estimator of φ1 if we can

make the second component ḡMT (θ)
0Ω+MM (θ) ḡMT (θ) equal to 0 for any φ1 by a suitable choice

of ν.
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Let us show that this is indeed the case. For any given value of φ1, the singularity of

ḡMT (ν,φ1) can be handled by computing the Moore-Penrose inverse of ΩMM (θ), which effec-

tively deletes one of the moments in ḡMT (ν,φ1), and at the same time imposing the manifold

φ∗01 ν1 −φ+01 cN1 = 0 on ν1. Therefore the second component is exactly identified for ν given φ1

and can thus be set to zero for any φ1.

In fact, it is not difficult to fully characterise the optimal estimator ν (φ1), which is not

generally the value of ν that sets ḡMT (ν,φ1) equal to zero because such a value does not

necessarily satisfy the manifold. In fact, the optimal estimator will be the value of ν that makes

ḡMT (ν,φ1) proportional to the eigenvector of ΩMM (θ) associated to its 0 eigenvalue, with a

factor of proportionality such that the manifold is satisfied.

Let q (θ) denotes the aforementioned eigenvector, which is equal to a vector whose first N1

entries are proportional to the value of φ∗1, and the rest N2 entries are equal to zero. Then, the

optimal choice of ν (φ1) is such that ḡMT [ν (φ1) ,φ1] = k (θ)q (θ). In large samples, we can

express the implicit solution as⎡⎣ R̄1T − ν1 (φ1)
R̄2T − ν2 (φ1)

⎤⎦−
⎡⎣ BMU1 (θ)

BMU2 (θ)

⎤⎦ h̄UT (φ1,0) = k (θ)

⎛⎝ φ∗1

0

⎞⎠ ,

or

ν1 (φ1) = R̄1T −BMU1 (θ) h̄UT (φ1)− k (θ)φ∗1, ν2 (φ1) = R̄2T −BMU2 (θ) h̄UT (φ1),

where θ = [φ1,ν (φ1)] and k (θ) is implicitly defined by the manifold φ∗01 ν1 −φ+01 cN1 = 0. ¤

Proposition 3:

Once again, we prove the CU-GMM numerical result, which in turn implies the GMM

asymptotic result. Let us study the original system⎡⎢⎢⎢⎣
(R− ν)(R1 − ν1)0ϕ+1 − ν

(R− ν)(R1 − ν1)0ϕ∗1 − cN

R− ν

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
IN 0 −ν

¡
ϕ+01 ,00N2

¢
− IN

0 IN −ν
¡
ϕ∗01 ,0

0
N2

¢
0 0 IN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
R(R1 − ν1)0ϕ+1 −R

R(R1 − ν1)0ϕ∗1 − cN

R− ν

⎤⎥⎥⎥⎦ .
In a CU-GMM set-up, we know that both systems are equivalent for the estimation of ϕ1

and ν. In addition, we can partition the latter system as⎡⎢⎢⎢⎢⎢⎢⎣
R(R1 − ν1)0ϕ+1 −R

R(R1 − ν1)0ϕ∗1 − cN

R1 − ν1
R2 − ν2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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which leaves ν2 as an additional nuisance parameter that is exactly identified.

If we orthogonalise R2 − ν2 with respect to the rest of influence functions then we can

additively decompose the criterion function into two components. One component is the criterion

function based on the sample average of

fC(R;ϕ1,ν1) =

⎡⎢⎢⎢⎣
R(R1 − ν1)0ϕ+1 −R

R(R1 − ν1)0ϕ∗1 − cN

R1 − ν1

⎤⎥⎥⎥⎦ ,
where we impose the manifold mC(ϕ1,ν1) = 0 and use a generalised inverse, while the other

component is a criterion function based on the sample moments

¡
R̄2T − ν2

¢
−BMC (ϕ1,ν1,ν2) f̄C,T (ϕ1,ν1),

where BMC (·) denotes the projection slopes from the corresponding HAC estimator ST (θ),

and where we have again dropped the T subscripts to simplify the notation. These moments

exactly identify ν2 given (ϕ1,ν1), and hence for any value of (ϕ1,ν1) we can make the second

component of the criterion function equal to zero by solving the implicit equation

ν2 (ϕ1,ν1) = R̄2T −BMC (ϕ1,ν1,ν2 (ϕ1,ν1)) f̄C,T (ϕ1,ν1).

Therefore this second component is irrelevant in large enough samples for the estimation of

(ϕ1,ν1) and the corresponding J test, so effectively they are both relying on fC(R;ϕ1,ν1) only.

Finally, note that the optimal estimator of ν2 will not be simply R̄2T in general, but rather the

value of ν2 that sets to 0 the orthogonalised condition above. ¤

Proposition 4:

As before, we prove the numerical CU-GMM result, which in turn implies the asymptotic

GMM result. Once we impose the manifold of Lemma 5, we can write hL(R;bi,bii) as⎛⎝ Φi ⊗ IN2
Φii ⊗ IN2

⎞⎠hH(R;b1) =
⎡⎣⎛⎝ Φi 0

0 Φii

⎞⎠⊗ IN2
⎤⎦ [c2 ⊗ hH(R;b1)].

It is then straightforward to show that the long-run covariance matrix of
√
T h̄LT (bi,bii)

will be ⎧⎨⎩
⎛⎝ Φi 0

0 Φii

⎞⎠⊗ IN2
⎫⎬⎭ [c2c02 ⊗ SH,T (b1)]

⎡⎣⎛⎝ Φ0i 0

0 Φ0ii

⎞⎠⊗ IN2
⎤⎦ ,
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where SH,T (b1) denotes a HAC estimator of the long-run covariance matrix of
√
T h̄HT (b1), a

generalised inverse of which is⎡⎣⎛⎝ Φ−10i 0

0 Φ−10ii

⎞⎠⊗ IN2
⎤⎦∙c2c02

4
⊗ S−1H,T (b1)

¸⎡⎣⎛⎝ Φ−1i 0

0 Φ−1ii

⎞⎠⊗ IN2
⎤⎦ .

Hence, it is clear that applying the optimal singular CU-GMM approach developed in section

3 to E[hL(R;bi,bii)] = 0 is numerically equivalent to applying the standard optimal CU-GMM

approach to E[hH(R;b1)] = 0. ¤

Proposition 5:

As usual, we prove the CU-GMM result, which in turn implies the GMM result. The

proof starts with the connection between the uncentred representing portfolios test and the

regression test. We can express the two sets of influence functions as transformations and

reparametrisations of the influence functions that we can use to estimate ν1, ν2, Γ11 and Γ21

E

⎡⎢⎢⎢⎢⎢⎢⎣
R1 − ν1
R2 − ν2

vec (R1R
0
1 − Γ11)

vec (R2R
0
1 − Γ21)

⎤⎥⎥⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎢⎢⎣
f1 (R1;ν1)

f2 (R2;ν2)

f3 (R1; vec (Γ11))

f4 (R; vec (Γ21))

⎤⎥⎥⎥⎥⎥⎥⎦ ,

under the constraints that spanning imposes, namely ν2 = Γ21Γ−111 ν1 and c2 = Γ21Γ
−1
11 c1.

Obviously, there are redundant terms in f3 (·), so we should use vech (·) instead of vec (·), but

we ignore this point for ease of exposition. In this context, the uncentred representing portfolios

test is based on⎛⎜⎜⎜⎜⎜⎜⎝
R1R

0
1φ

+
1 −R1

R2R
0
1φ

+
1 −R2

R1R
0
1φ
∗
1 − c1

R2R
0
1φ
∗
1 − c2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
−I1 0 φ+01 ⊗ I1 0

0 −I2 0 φ+01 ⊗ I2
0 0 φ∗01 ⊗ I1 0

0 0 0 φ∗01 ⊗ I2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
f1

f2

f3

f4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

φ+1 = Γ
−1
11 ν1, φ∗1 = Γ

−1
11 c1,

under the null of spanning, while the HK test is based on

⎛⎝ R2 −BR1
R1 ⊗ (R2 −BR1)

⎞⎠ =

⎛⎝ −B I2 0 0

0 0 − (I1 ⊗B) I21

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝
f1

f2

f3

f4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B = Γ21Γ
−1
11 , Bc1= c2.
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under the null again.

Now we saturate both systems until we get the same number of moments as in f so as to

achieve exactly identified systems. The representing portfolios system can be saturated with the

estimation of all the elements of Γ11 and Γ21 excluding one of the columns of Γ21, while the

regression system can be saturated with the estimation of ν1 and Γ11. Both tests are numerically

equal because CU-GMM is invariant to parameter-dependent transformations.

We can then reparametrise both systems back to their original parameters. Both tests con-

tinue to be numerically equal because CU-GMM is not affected by bijective reparametrisations.

Now we can exclude the moments that we used to saturate both systems and still preserve a

numerical equivalence, as in the proofs of Propositions 2 and 3.

Finally, we show the connection between the centred and uncentred representing portfolios

test. Using (3), we can reparametrise the mean condition (12) as

RR01φ
+
1 −R = RR01

∙
1

1 + ν 01ϕ
+
1

ϕ+1

¸
−R

=

µ
1

1 + ν01ϕ
+
1

¶£
RR01ϕ

+
1 −

¡
1 + ν01ϕ

+
1

¢
R
¤
=

µ
1

1 + ν01ϕ
+
1

¶£
R(R1 − ν1)0ϕ+1 −R

¤
.

The cost condition of (12) plus ν01ϕ
∗
1 times the mean condition is£

RR01φ
∗
1 − cN

¤
+
¡
ν01ϕ

∗
1

¢ £
RR01φ

+
1 −R

¤
=

∙
RR01

∙
ϕ∗1 −

ν01ϕ
∗
1

1 + ν01ϕ
+
1

ϕ+1

¸
− cN

¸
+
¡
ν01ϕ

∗
1

¢ ∙
RR01

∙
1

1 + ν01ϕ
+
1

ϕ+1

¸
−R

¸
=

∙¡
RR01ϕ

∗
1 − cN

¢
−
µ

ν01ϕ
∗
1

1 + ν01ϕ
+
1

¶
RR01ϕ

+
1

¸
+

µ
ν01ϕ

∗
1

1 + ν01ϕ
+
1

¶£
RR01ϕ

+
1 −

¡
1 + ν01ϕ

+
1

¢
R
¤

= R(R1 − ν1)0ϕ∗1 − cN .

Therefore, we can relate the two systems as⎛⎜⎜⎜⎝
R1 − ν1

RR01φ
+
1 −R

RR01φ
∗
1 − cN

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
I1 0 0

0 1
1+ν01ϕ

+
1

IN 0

0 − ν01ϕ
∗
1

1+ν01ϕ
+
1

IN IN

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

R1 − ν1
R(R1 − ν1)0ϕ+1 −R

R(R1 − ν1)0ϕ∗1 − cN

⎞⎟⎟⎟⎠ .

Since the addition of R1 − ν1 on the left does not affect the test, the CU-GMM J tests will

be equal. ¤

B Proofs of Lemmata

Lemmata 1, 3, and 5 are trivial to prove. Therefore, here we focus on the remaining lemmata.
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Lemma 2:

Let us re-order the estimating functions in (12) as⎛⎜⎜⎜⎜⎜⎜⎝
R1R

0
1φ

+
1 −R1

R1R
0
1φ
∗
1 − cN1

R2R
0
1φ

+
1 −R2

R2R
0
1φ
∗
1 − cN2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎣ hU1(R;φ1)
hU2(R;φ1)

⎤⎦ .

We just need to check that the condition (C1) in Lemma C1 (see Appendix C below) is

satisfied for s1 = s2 = 0, with the additional peculiarity that since the second block of moment

conditions contains no additional parameters in this case, we simply have to check that the left

hand side of (C1) is equal to 0. But since DU1 = I2⊗Γ11, and DU2 = I2⊗Γ21, it is easy to see

that DU2D
−1
U1SU11 will be equal to⎧⎨⎩ (1 + b1)

−1 [1 + κb1 (1 + b1)
−1]

a1 (1 + b1)
−1 κ

a1 (1 + b1)
−2 κ

[c1 − a21 (1 + b1)
−1] + κ

³
[c1 − a21 (1 + b1)

−1]− a21 (1 + b1)
−2
´
⎫⎬⎭⊗ Γ21

+

⎧⎨⎩ −2 (1 + b1)
−2 +

³
3b21 (1 + b1)

−2 − 5b1 (1 + b1)−1 + 2
´
κ

a1 (1 + b1)
−2 (2− 3κ)

a1 (1 + b1)
−2 (2− 3κ)

−2a21 (1 + b1)
−2 + {3a21 (1 + b1)

−2 − [c1 − a21 (1 + b1)
−1]}κ

⎫⎬⎭⊗ Γ21Γ−111 ν1ν01
+

⎛⎝ 0 0

0 1 + 2κ

⎞⎠⊗ Γ21Γ−111 cN1c0N1
+

⎡⎣ 0 (1 + b1)
−1 κ

(1 + b1)
−1 κ −2a1 (1 + b1)−1 κ

⎤⎦⊗ Γ21Γ−111 ¡ν1c0N1 + cN1ν
0
1

¢
,

where SU11 has been obtained from Lemma D1 in Appendix D below, a1 = cov(p∗∗1 , p++1 ) =

ν01Σ
−1
11 cN1 , b1 = V (p++1 ) = ν01Σ

−1
11 ν1, and c1 = V (p∗∗1 ) = c0N1Σ

−1
11 cN1 . Finally, since ν2 =

Γ21Γ
−1
11 ν1 and cN2 = Γ21Γ

−1
11 cN1 under the null of spanning, we will have that DU2D

−1
U1SU11 =

SU21, where SU21 can also be obtained from Lemma D1. ¤

Lemma 4:
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Let us begin again by re-ordering the estimating functions (15) as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1 − ν1
R1(R1 − ν1)0ϕ+1 −R1
R1(R1 − ν1)0ϕ∗1 − cN1

R2(R1 − ν1)0ϕ+1 −R2
R2(R1 − ν1)0ϕ∗1 − cN2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ f1(R1;ϕ1,ν1)
f2(R;ϕ1,ν)

⎤⎦ .

We have to check that condition (C1) in Lemma C1 applied to

h1(R;θ) = f1(R1;ϕ1,ν1), h2(R;θ) = f2(R;ϕ1,ν1),

is satisfied, where in this case θ = (ν 01, ϕ
0
1)
0, and again there are no elements in ρ.

To do so, we must first orthogonalise the two blocks of moment conditions by regressing

the second set of estimating functions evaluated at θ0 onto the first one evaluated at θ0. The

regression coefficients, though, are not uniquely defined since the singularity in the system is

confined to h1 (R;θ). Nevertheless, it is easy to see that g2(R;θ0), where

g2(R;θ) = h2(R;θ)− Bh1(R;θ),

B =
h
02N2×N1 I2 ⊗B0

i
, B0 = Σ21Σ

−1
11 ,

will be orthogonal to h1
¡
R;θ0

¢
because S21 = BS11 given the result in Lemma D2 in Appendix

D below. In this respect, note that (I2 ⊗ B0) can be interpreted as the coefficients in the

multivariate regression of ⎡⎣ R2(R1 − ν1)0ϕ+1 −R2
R2(R1 − ν1)0ϕ∗1 − cN2

⎤⎦
on ⎡⎣ R1(R1 − ν1)0ϕ+1 −R1

R1(R1 − ν1)0ϕ∗1 − cN1

⎤⎦ .
The next step is to find the appropriate reparametrisation that exploits the singularity in

h1 (R;θ), together with the Moore-Penrose inverses of the covariance matrices of h1
¡
R;θ0

¢
and g2

¡
R;θ0

¢
. Given that the latter covariance matrix has full rank, we should concentrate

on the first block. Specifically, we could work with the reparametrisation θ = l1(α1,β1) =

( ν01 α1 ϕ+0−1 ϕ∗01 )0, where ϕ+−1 contains the last N1 − 1 elements of ϕ+1 , and α1 = ϕ∗01 ν1 −

ϕ+01 cN1 , together with the non-singular set of moment conditions

P01h1[R; l1(α1,β1)],

P02g2[R; l1(α1,β1)],
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where P1 are the eigenvectors associated with the non-zero eigenvalues of the asymptotic covari-

ance matrix of
√
T h̄1T

¡
θ0
¢
, while P2 contains all the eigenvectors of the asymptotic covariance

matrix of
√
T ḡ2T (θ

0).

In view of Lemma C1, the condition for asymptotic equivalence between the optimal GMMS

estimators of θ based on E[h1 (R;θ)] = 0 alone, and the ones that also exploit the information

in E[h2 (R;θ)] = 0, is simply that

E

"
∂
¡
P02g2[R; l1(0,β

0
1)]
¢

∂β01

#
= 0.

But since P2 has full rank, an equivalent condition in terms of the original moment conditions

and parameters is

E

"
∂h2

¡
R;θ0

¢
∂θ0

− B
∂h1

¡
R;θ0

¢
∂θ0

#
L1β1(0,β

0
1) = 0,

where

L1β1(0,β1) =
∂l1(0,β1)

∂β01
=

⎛⎜⎜⎜⎜⎜⎜⎝
IN1 0 0

ϕ∗01

0

−c0N1−1
IN1−1

ν 01

0

0 0 IN1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We can finally show that

E

"
∂h2

¡
R;θ0

¢
∂θ0

#
=

⎛⎝ −ν2ϕ+01 Σ21 0

−ν2ϕ∗01 0 Σ21

⎞⎠ ,

E

"
∂h1

¡
R;θ0

¢
∂θ0

#
=

⎛⎜⎜⎜⎝
−IN1 0 0

−ν1ϕ+01 Σ11 0

−ν1ϕ∗01 0 Σ11

⎞⎟⎟⎟⎠ ,

so that under the null of spanning

E

"
∂h2

¡
R;θ0

¢
∂θ0

− B
∂h1

¡
R;θ0

¢
∂θ0

#
=

⎛⎝ 0 0 0

0 0 0

⎞⎠ ,

whence the result follows. ¤

Lemma 6:

First of all, given the result of Lemma D3 below, the relevant long-run variance is

SL = (z⊗ IN2)

⎡⎣⎛⎝ 1 ν01

ν1 (κ+ 1)Σ11 + ν1ν
0
1

⎞⎠⊗Ω
⎤⎦ (z0⊗IN2),
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where

z =

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 −cN1−1 IN1−1

⎞⎟⎟⎟⎠ .

Similarly, the Jacobian of the moment conditions (17) will be

DL = −

⎡⎢⎢⎢⎣z
⎛⎝ 1 ν01

ν1 Γ11

⎞⎠
⎛⎜⎜⎜⎝

0

−c0N1−1
IN1−1

⎞⎟⎟⎟⎠⊗ IN2
⎤⎥⎥⎥⎦ .

As a result, D0
LS
−1
L will be equal to

−

⎧⎪⎨⎪⎩( 0 −cN1−1 IN1−1 )

⎛⎝ 1 ν01

ν1 Γ11

⎞⎠⎡⎣ 1 ν01

ν1 (κ+ 1)Σ11 + ν1ν
0
1

⎤⎦−1z−1 ⊗Ω−1
⎫⎪⎬⎪⎭

= −

⎧⎪⎪⎪⎨⎪⎪⎪⎩( 0 −cN1−1 I )

⎡⎣ 1 0

κ(κ+ 1)−1ν1 (κ+ 1)−1IN1

⎤⎦
⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 cN1−1 IN1−1

⎞⎟⎟⎟⎠⊗Ω−1
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= −
n
(κ+ 1)−1[ κ (ν1b − ν1acN1−1) 0 IN1−1 ]⊗Ω

−1
o
.

which confirms that the optimal instrument is proportional to a constant translation of R1b-

R1acN1−1. ¤

C Some useful GMM results

C.1 Efficiency improving moments

We extend to the singular case earlier results in Gouriéroux, Monfort and Renault (1996)

and Lezan and Renault (1999), which in turn nest Theorem 1 in Breusch et al. (1999).

Let h1(xt;θ) denote a set of n1 estimating functions for 0 < k1 ≤ n1 unknown parameters

θ, whose true values are implicitly defined by E[h1(xt;θ
0)] = 0, and let h2(xt;θ,ρ) denote

an additional set of n2 estimating functions that depend not only on θ but also on some

additional 0 ≤ k2 ≤ n2 unknown parameters ρ, whose true values are implicitly defined by

E[h2(xt;θ
0,ρ0)] = 0. Let

S(θ0,ρ0) =

⎛⎝ S11 S021

S21 S22

⎞⎠
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denote the joint asymptotic covariance matrix of [
√
T h̄01T (θ

0),
√
T h̄02T (θ

0,ρ0)]0, and factorise it

as ⎛⎝ In1 0

−S21S−11 In2

⎞⎠⎛⎝ S11 0

0 S22|1

⎞⎠⎛⎝ In1 −S−011S021
0 In2

⎞⎠ ,

where S−11 is some generalised inverse of S11, and

S22|1 = S22 − S21S−11S021

can be regarded as the asymptotic covariance matrix of
√
T ḡ2T (θ

0,ρ0), where

g2(xt;θ,ρ) = h2(xt;θ,ρ)− S21S−11h1(xt;θ),

are some transformed estimating functions, which are invariant to the choice S−11. In addition,

let

Π (θ,ρ) =

⎡⎣ Π11 (θ) Π12 (θ,ρ)
0 Π22 (θ,ρ)

⎤⎦
denote a (n1+n2)× (s1+ s2) matrix of continuously differentiable known functions of θ and ρ,

with 0 ≤ s1 ≤ k1 and 0 ≤ s2 ≤ k2, such that⎡⎣ Π011 (θ) 0

Π012 (θ,ρ) Π
0
22 (θ,ρ)

⎤⎦√T
⎡⎣ h̄1,T (θ

0)

ḡ2,T (θ,ρ)

⎤⎦ L2→ 0 ⇔

⎡⎣ m1(θ)

m2(θ,ρ)

⎤⎦ =m(θ,ρ) = 0,
where m(θ,ρ) is a (s1 + s2) continuously differentiable function of θ and ρ with

rank

∙
∂m(θ0,ρ0)

∂(θ0,ρ0)

¸
= (s1 + s2).

Moreover, assume that m(θ0,ρ0) = 0 if s1+ s2 > 0, and that rank[S11] = n1− s1, rank[S22|1] =

n2 − s2, so that rank[S(θ0,ρ0)] = (n1 + n2)− (s1 + s2).

Lemma C1 Subject to the required regularity conditions, the optimal GMM estimator of θ based
on

E[h1(xt;θ)] = 0

alone is asymptotically as efficient as the optimal GMM estimator that additionally uses

E[h2(xt;θ,ρ)] = 0

if and only if

P02D2θ(θ
0,ρ0)L1β1(0,β1) ∈

­
P02D2ρ(θ

0,ρ0)L2β2(0,β1,0,β2)
®
, (C1)

where P2∆2P
0
2 provides the spectral decompositions of S22|1,

D2θ(θ,ρ) = E

∙
∂g2(xt;θ,ρ)

∂θ0

¸
= E

∙
∂h2(xt;θ,ρ)

∂θ0

¸
− S21S−11E

∙
∂h1(xt;θ)

∂θ0

¸
,

D2ρ(θ,ρ) = E

∙
∂g2(xt;θ,ρ)

∂ρ0

¸
= E

∙
∂h2(xt;θ,ρ)

∂ρ0

¸
,
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⎛⎜⎜⎝
α1
β1
α2
β2

⎞⎟⎟⎠ =

∙
M1(θ)
M2(θ,ρ)

¸
,

with the first s1 entries of M1(θ) being α1 = m1(θ) and the first s2 entries of M2(θ,ρ) being
α2 =m2(θ,ρ),

L1β1(α1,β1) =
∂l1(α1,β1)

∂β01
,

L2β2(α1,β1,α2,β2) =
∂l2(α1,β1,α2,β2)

∂β02
,

∙
l1[M1(θ)]

l2[M1(θ),M2(θ,ρ)]

¸
=

µ
θ
ρ

¶
,

and hAi denotes the column space of the the matrix A.

Proof. We know that the moment condition E[g2(xt;θ,ρ)] = 0 can replace E[h2(xt;θ,ρ)] = 0

without loss of asymptotic efficiency. Given that
√
T ḡ2T (θ

0,ρ0) and
√
T h̄1T (θ

0) are asymptoti-

cally orthogonal by construction, the discussion in section 3 implies that the right way to exploit

the potential singularities in both sets of moment conditions is to estimate the parameters β1

and β2 from the transformed moment conditions:

P01h1[xt; l1(0,β1)],

P02h2[xt; l1(0,β1), l2(0,β1,0,β2)],

whereP1Λ1P01 provides the spectral decomposition of S11. Let us denote byD11(β
0
1),D21(β

0
1,β

0
2),

and D22(β
0
1,β

0
2) the corresponding Jacobians.

Let β̂1T and β̂2T denote the optimal GMM estimators of β1 and β2 based on both subsets

of moment conditions. Similarly, let β̄1T denote the optimal GMM estimator based on the

first subset of moment conditions. Since we have transformed the potentially singular problem

in a non-singular one, under standard regularity conditions the asymptotic variances of these

estimators will be:

lim
T→∞

V

⎡⎣ √T (β̂1T − β01)√
T (β̂2T − β02)

⎤⎦ =
⎧⎨⎩
⎡⎣ D0

11(β
0
1) D0

21(β
0
1,β

0
2)

0 D0
22(β

0
1,β

0
2)

⎤⎦
×

⎡⎣ Λ−11 0

0 Λ−12

⎤⎦⎡⎣ D11(β
0
1) 0

D21(β
0
1,β

0
2) D22(β

0
1,β

0
2)

⎤⎦⎫⎬⎭
−1

,

and

lim
T→∞

V [
√
T (β̄1T − β01)] = [D0

11(β
0
1)Λ

−1
1 D11(β

0
1)]
−1.
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Hence, we need to compare this last expression with limT→∞ V [
√
T (β̂1T − β01)], which is given

by:

{D0
11(β

0
1)Λ

−1
1 D11(β

0
1) +D

0
21(β

0
1,β

0
2)Λ

−1
2 D21(β

0
1,β

0
2)

−D0
21(β

0
1,β

0
2)Λ

−1
2 D22(β

0
1,β

0
2)[D

0
22(β

0
1,β

0
2)Λ

−1
2 D22(β

0
1,β

0
2)]
−1

×D0
22(β

0
1,β

0
2)Λ

−1
2 D21(β

0
1,β

0
2)}−1.

Since both asymptotic covariance matrices are positive definite, they will be equal if and

only if the matrix

D0
21(β

0
1,β

0
2)Λ

−1
2 D21(β

0
1,β

0
2)−D0

21(β
0
1,β

0
2)Λ

−1
2 D22(β

0
1,β

0
2)

×[D0
22(β

0
1,β

0
2)Λ

−1
2 D22(β

0
1,β

0
2)]
−1D0

22(β
0
1,β

0
2)Λ

−1
2 D21(β

0
1,β

0
2)

is 0. But since we can interpret this matrix as the residual variance in the asymptotic least

squares projection of D0
21(β

0
1,β

0
2)Λ

−1
2

√
TP02ḡ2T (0,β

0
1,0,β

0
2) onto D0

22(β
0
1,β

0
2)Λ

−1
2

×
√
TP02ḡ2T (0,β

0
1,0,β

0
2), it will be zero if and only if we can write D21(β

0
1,β

0
2) as a linear

combination of D22(β
0
1,β

0
2). ¤

C.2 Computation of CU-GMM

In this appendix we suggest an intuitive method that simplifies the computation of con-

tinuously updated GMM estimators in standard (i.e non-singular) situations, as well as in the

singular case characterised by condition (7), which is the relevant one for spanning tests.

C.2.1 Uncentred CU-GMM and OLS output

We begin by generalising the minmax interpretation of the CU-GMM estimator in an IV

context (see for example Arellano (2002), who traces it back to Sargan’s work). Let H (θ) define

the T × n matrix that contains the sample values of the influence functions evaluated at some

parameter values θ.

If we do not demean the influence functions, the HAC estimators of the long-run covariance

matrix can be expressed as

ST (θ) =
1

T

TX
t=1

TX
j=1

wtjh (xt;θ)h
0 (xj ;θ) = H (θ)

0WH (θ) ,

where W is a T × T real matrix. For simplicity, we focus on those weighting schemes that

guarantee the positive definiteness ofW. For instance, the usual Newey-West triangular scheme
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with one lag yields

W =
1

4

⎛⎜⎜⎜⎜⎜⎜⎝
1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

0 0 0.5 1

⎞⎟⎟⎟⎟⎟⎟⎠
when T = 4. If we do not want to consider lags in the HAC estimator then we simply work with

W = T−1IT . Let us express the Cholesky decomposition ofW as

W =WLW
0
L

whereWL is lower triangular. The optimal CU-GMM estimator can be computed as a minmax

criterion based on a certain R2:

Lemma C2 Let

θ̃T = min
θ
J̃T (θ) ,

J̃T (θ) = h̄0T (θ)S−T (θ) h̄T (θ) .

Then

θ̃T = min
θ

R2 (θ) ,

R2 (θ) = max
λ

"
1−

¡
W−1

L cT −W0
LH (θ)λ

¢0 ¡
W−1

L cT −W0
LH (θ)λ

¢
c0TW

−1cT

#
irrespective of the generalised inverse used.

Proof. We can understand the CU-GMM criterion as the explained variation in the OLS

regression ofW−1
L cT ontoW0

LH (θ) because

J̃T (θ) = h̄0T (θ)
£
H (θ)0WH (θ)

¤−
h̄T (θ) =£

T−1H (θ)0WLW
−1
L cT

¤0 £
H0 (θ)WLW

0
LH (θ)

¤− £
T−1H0 (θ)WLW

−1
L cT

¤
.

The fact that the matrix X (X0X)−X0 is independent of the chosen inverse confirms that this

CU-GMM criterion is independent of the particular generalised inverse chosen. ¤

Note that if condition (7) in Section 3 holds, then H (θ) will be of reduced column rank

too. Specifically, H (θ)Π(θ) = 0 whenever m(θ) = 0, where Π (θ) and m(θ) are defined

in Assumption 1. The OLS interpretation of the CU-GMM criterion is very useful for the

computation of the CU-GMM estimator in this context because the R2 (θ) is uniquely defined.

Nevertheless, we should compute the necessary quantities with an OLS routine that is robust

to multicollinearity.
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For ease of exposition, we have not made explicit the equality restriction m(θ) = 0 in the

previous expressions. Using the notation in the proof of Proposition 1, we can work with the

alternative k parameters α (s× 1) and β ((k − s)× 1)

( α0 β0 ) =M
0(θ),

where the first s entries are defined by α =m(θ). We can impose the parametric restrictions

m(θ) = α = 0 by working with the smaller vector of parameters β, so that the influence

functions become h [xt, l(0,β)].

C.2.2 Centred CU-GMM and OLS output

Let us consider the same context of the previous section, but this time we demean the

moment conditions before using the HAC estimator

ST (θ) = U
0 (θ)WU (θ)

where U (θ) = H (θ)− cT h̄
0
T (θ). If we define

h̃T (θ) =H
0 (θ)WcT

then we can obtain ST (θ) as follows

U0 (θ)WU (θ) = H0 (θ)WH (θ)− h̃T (θ) h̄
0
T (θ)− h̄T (θ) h̃

0
T (θ) + kh̄T (θ) h̄

0
T (θ) ,

where

k = c0TWcT .

Let us define φ1 (θ) as the solution to

[H0 (θ)WH (θ)]φ1 (θ) = h̄T (θ)

and φ2 (θ) as the solution to

[H0 (θ)WH (θ)]φ2 (θ) = h̃T (θ) .

Finally, let

KT (θ) = h̃
0
T (θ)φ2 (θ) = h̃

0
T (θ) [H

0 (θ)WH (θ)]−h̃T (θ) ,

KT (θ) = h̃
0
T (θ)φ1 (θ) = h̄

0
T (θ)φ2 (θ) = h̄

0
T (θ) [H

0 (θ)WH (θ)]−h̃T (θ) ,

and note that J̃T (θ) = h̄0T (θ)φ1 (θ) = h̄0T (θ) [H0 (θ)WH (θ)]−h̄T (θ). Using this notation, we

can once more relate a CU-GMM criterion function to certain OLS quantities:
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Lemma C3 The CU-GMM criterion function based on ST (θ) can be expressed as

J̃T (θ) = h̄
0
T (θ)S

−
T (θ) h̄T (θ) =

J̃T (θ)
(k −KT (θ)) J̃T (θ) + (1−KT (θ))

2

irrespective of the generalised inverse used.

Proof. It is easy to see that

φ3 (θ) =
J̃T (θ)

(k −KT (θ)) J̃T (θ) + (1−KT (θ))
2

∙
1−KT (θ)

J̃T (θ)
φ1 (θ) +φ2 (θ)

¸
solves

[U0 (θ)WU (θ)]φ3 (θ) = h̄T (θ) ,

which means that although we cannot interpret φ3 (θ) directly as a OLS slope, we can link it to

the OLS slopes φ1 (θ) and φ2 (θ). On this basis, we can express the centred CU-GMM criterion

as

J̃T (θ) = h̄
0
T (θ)S

−
T (θ) h̄T (θ) = h̄

0
T (θ) [U

0 (θ)WU (θ)]−h̄T (θ)

= h̄
0
T (θ)φ3 (θ) =

J̃T (θ)
(k −KT (θ)) J̃T (θ) + (1−KT (θ))

2 .

Again, J̃T (θ), KT (θ), and KT (θ) are constructed from a matrix that can be expressed as

X (X0X)−X0, which confirms the invariance of the CU-GMM criterion J̃T (θ) to the choice of

generalised inverse. ¤

Unlike in the uncentred case, two different projections are required to interpret the centred

CU-GMM criterion in terms of OLS. The first one regressesW−1
L cT ontoW0

LH (θ), but now we

also need to regress W0
LcT onto W

0
LH (θ). Once again, this OLS interpretation is very useful

for the computation of the CU-GMM estimator, especially in the singular case.

C.2.3 Relationship between centred and uncentred criteria

In principle there is not a systematic ordering of the two criteria J̃T (θ) and J̃T (θ), which

will generally lead to different estimators. However, in the i.i.d. case Newey and Smith (2004)

show that J̃T (θ) is a monotonic transformation of J̃T (θ), so that both criteria will yield the

same estimator of θ. Specifically,

J̃T (θ) = h̄0 (θ) [T−1H (θ)0H (θ)]−h̄ (θ)

≤ J̃T (θ) = h̄0 (θ) [T−1U0 (θ)U (θ)]−h̄ (θ) =
J̃T (θ)

1− J̃T (θ)
,
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with J̃T (θ) ∈ [0, 1].

Finally, we can formally link our previous results to the Riesz representation theorem for

Hilbert spaces that we used in Section 2. In particular, we can interpret

q+ (θ) = h0 (θ) [T−1H0 (θ)H (θ)]−h̄T (θ)

as the “uncentred mean representing influence function” and

q++ (θ) = h0 (θ) [T−1U0 (θ)U (θ)]−h̄T (θ)

as the “centred mean representing influence function”. The results for representing portfolios

presented in Section 2 can then be used to link the two as

q++ (θ) = {1−ET [q
+ (θ)]}−1q+ (θ) ,

and to understand the cases where these expressions are not well defined.

D Covariance matrices of the sample moment conditions under
i.i.d. elliptical returns

Elliptical distributions are usually defined by means of the affine transformation Rt = ν0 +

(Σ0)1/2ε◦t , where ε
◦
t is a spherically symmetric random vector of dimension N , which in turn is

fully characterised in Theorem 2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut, where ut is

uniformly distributed on the unit sphere surface in RN , and et is a non-negative random variable

which is independent of ut. The variables et and ut are referred to as the generating variate and

the uniform base of the spherical distribution. Assuming that E(e2t ) <∞, we can standardise ε◦t
by setting E(e2t ) = N , so that E(ε◦t ) = 0, V (ε

◦
t ) = IN , E(Rt) = ν and V (Rt) = Σ. For instance,

if et =
p
(υ0 − 2)ζt/ξt, ζt is a chi-square random variable withN degrees of freedom, and ξt is an

independent Gamma variate with mean υ0 > 2 and variance 2υ0, then ε◦t will be distributed as a

standardised multivariate Student t random vector of dimension N with υ0 degrees of freedom,

which converges to a standardised multivariate normal as υ0 → ∞. If we further assume that

E(e4t ) <∞, then the coefficient of multivariate excess kurtosis κ reduces to E(e4t )/N(N+2)−1.

For instance, κ = 2/(υ0 − 4) in the Student t case, and κ = 0 under normality. In this respect,

note that since E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarzt inequality, with equality if and

only if et =
√
N so that ε◦t is proportional to ut, then κ ≥ −2/(N + 2), the minimum value

being achieved in the uniformly distributed case.
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Then, it is easy to combine the representation of elliptical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of the elliptical distribution are given by

E(RR0 ⊗R) = (IN2 +KNN) (ν ⊗Σ) + vec (Γ)ν 0, (D1)

and

E(RR0 ⊗RR0) = (Σ⊗Σ) (IN2 +KNN) + (IN2 +KNN )
¡
Σ⊗ νν0

¢
(IN2 +KNN )

+vec (Γ) vec (Γ)0 + κ
£
(Σ⊗Σ) (IN2 +KNN) + vec (Σ) vec (Σ)0

¤
, (D2)

respectively, where KNN is the commutation matrix studied in Magnus and Neudecker (1988).

Similarly, it is possible to show that the mean vector and covariance matrix of the distribution

of R2 conditional on R1 will be E(R2|R1) = ν2 +Σ21Σ
−1
11 (R1 − ν1) and V (R2|R1) = ([(R1 −

ν1)
0Σ−111 (R1 − ν1)] ·Ω, where Ω = Σ22 −Σ21Σ−111 Σ021, and ((.) is a scalar function whose form

depends on the member of the elliptical class (see again Fang, Kotz and Ng (1990)). For instance,

((.) is identically 1 in the multivariate normal case, and affine in its argument for the Student t

(see Zellner (1971, pp. 383-389)).

The following three results exploit these properties to obtain closed form expressions for the

asymptotic covariance matrices of the sample moment conditions that appear in the different

testing procedures. For the sake of generality, we derive them without imposing the null of

spanning, but this can be easily modified by using the relevant parametric restrictions. The

lemmas use the following notation: a= cov(p∗∗, p++) = ν 0Σ−1cN , b= V (p++) = ν0Σ−1ν, and

c= V (p∗∗) = c0NΣ
−1cN .

Lemma D1 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ, and
bounded fourth moments, then the asymptotic covariance matrix of

1√
T

TX
t=1

µ
RtR

0
tφ
+ −Rt

RtR
0
tφ
∗ − cN

¶
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will be ½
(1 + b)−1 [1 + κb (1 + b)−1]

a (1 + b)−1 κ

a (1 + b)−2 κ

[c− a2 (1 + b)−1] + κ
³
[c− a2 (1 + b)−1]− a2 (1 + b)−2

´ )⊗ Γ
+

(
−2 (1 + b)−2 +

³
3b2 (1 + b)−2 − 5b (1 + b)−1 + 2

´
κ

a (1 + b)−2 (2− 3κ)
a (1 + b)−2 (2− 3κ)

−2a2 (1 + b)−2 + {3a2 (1 + b)−2 − [c− a2 (1 + b)−1]}κ

¾
⊗ νν 0

+

µ
0 0
0 1 + 2κ

¶
⊗ cNc

0
N +

∙
0 (1 + b)−1 κ

(1 + b)−1 κ −2a (1 + b)−1 κ

¸
⊗
¡
νc0N + cNν

0¢ .
Proof. Tedious but straightforward on the basis of (D1) and (D2). ¤

Lemma D2 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ, and
bounded fourth moments, then the asymptotic covariance matrix of

1√
T

TX
t=1

⎡⎣ Rt − ν
Rt(Rt − ν)0ϕ+ −Rt

Rt(Rt − ν)0ϕ∗ − cN

⎤⎦
will be ⎡⎣ 1 −1 0

−1 1 + (κ+ 1)b (κ+ 1)a
0 (κ+ 1)a (κ+ 1)c

⎤⎦⊗Σ
+

⎡⎣ 0 νν 0 cNν
0

νν 0 (b+ 2κ− 1)νν0 aνν 0 + κ (cNν
0 + νc0N)

νc0N aνν 0 + κ (cNν
0 + νc0N ) cνν 0 + (2κ+ 1)cNc0N

⎤⎦ .
Proof. Tedious but straightforward on the basis of (D1) and (D2). ¤

Lemma D3 If Rt is an i.i.d. elliptical random vector with mean ν, covariance matrix Σ, and
bounded fourth moments, then the asymptotic covariance matrix of

1√
T

TX
t=1

∙µ
1
R1t

¶
⊗ (R2t − a−BR1t)

¸
will be µ

1 ν 01
ν1 (κ+ 1)Σ11 + ν1ν

0
1

¶
⊗Ω.

Proof. First of all, we can apply the law of iterated expectations to show that

E{E[hh0|R1]}

=

⎡⎣ E{([(R1 − ν1)0Σ−111 (R1 − ν1)]} E{([(R1 − ν1)0Σ−111 (R1 − ν1)]R01}

E{([(R1 − ν1)0Σ−111 (R1 − ν1)]R1} E{([(R1 − ν1)0Σ−111 (R1 − ν1)]R1R01}

⎤⎦⊗Ω,
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for

h =

⎛⎝ 1

R1

⎞⎠⊗ (R2 − a−BR1).
But since

V (R2t) = Σ22 = E [V (R2|R1)] + V [E (R2|R1)]

= E{([(R1 − ν1)0Σ−111 (R1 − ν1)]} ·Ω+BΣ11B0,

then it must be the case that E{([(R1 − ν1)0Σ−111 (R1 − ν1)]} = 1. Similarly, since

E
©
(R1-ν1) · vec0

£
(R2-ν2)(R2-ν2)0

¤ª
=E

£
(R1-ν1) ·E

©
vec0

£
(R2-ν2)(R2-ν2)0

¤
|R1

ª¤
= E[(R1-ν1) · vec{([(R1-ν1)0Σ−111 (R1-ν1)] ·Ω+B(R1-ν1)(R1-ν1)0B0}] = 0

by the symmetry of elliptical random vectors, it must also be the case that

E{([(R1 − ν1)0Σ−111 (R1 − ν1)](R1 − ν1)} = 0,

and consequently, that E[([(R1 − ν1)0Σ−111 (R1 − ν1)]R1} = ν1.

Finally, since

E
£
(R2 − ν2)(R2 − ν2)0 ⊗ (R1 − ν1)(R1 − ν1)0

¤
= (κ+ 1)

£
(Σ22 ⊗Σ11) + (Σ21 ⊗Σ12)KN1,N2 + vec (Σ12) vec (Σ12)

0¤
= E

©
E
£
(R2 − ν2)(R2 − ν2)0|R1

¤
⊗ (R1 − ν1)(R1 − ν1)0

ª
= E[{([(R1 − ν1)0Σ−111 (R1 − ν1)] ·Ω

+B(R1 − ν1)(R1 − ν1)0B0}⊗ (R1 − ν1)(R1 − ν1)0]

= Ω⊗E{([(R1 − ν1)0Σ−111 (R1 − ν1)] · (R1 − ν1)(R1 − ν1)0}

+(B⊗ IN1)E
£
(R1 − ν1)(R1 − ν1)0⊗(R1 − ν1)(R1 − ν1)0

¤ ¡
B0 ⊗ IN1

¢
= Ω⊗E{([(R1 − ν1)0Σ−111 (R1 − ν1)] · (R1 − ν1)(R1 − ν1)0}

+(κ+ 1)
£
(BΣ12 ⊗Σ11) + (Σ21 ⊗Σ12)KN1,N2 + vec (Σ12) vec (Σ12)

0¤ ,
where we have repeatedly used expression (D2) for the fourth moments of an elliptical vector,

and the fact that

Σ =

⎛⎝ IN1 0

B IN2

⎞⎠⎛⎝ Σ11 0

0 Ω

⎞⎠⎛⎝ IN1 B0

0 IN2

⎞⎠ ,

it must be the case that E{([(R1−ν1)0Σ−111 (R1−ν1)] · (R1−ν1)(R1−ν1)0} = (κ+1)Σ11, and

consequently, that E{([(R1 − ν1)0Σ−111 (R1 − ν1)]R1R01} = (κ+ 1)Σ11 + ν1ν
0
1. ¤
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Table 1

Tests of spanning for the six size and book-to-market sorted portfolios by the two Fama-French

portfolios and the market.

Monthly data from 1952 to 2007

Lags SM, SH, BM SL SM SH BL BM BH

0 57.68 (.00) 57.24 (.00) 26.65 (.00) 5.76 (.06) 12.25 (.00) 7.12 (.03) 40.46 (.00)

5 26.18 (.00) 29.40 (.00) 17.27 (.00) 5.02 (.08) 9.53 (.01) 5.73 (.06) 22.24 (.00)

10 27.33 (.00) 20.30 (.00) 14.72 (.00) 4.65 (.10) 8.45 (.01) 4.87 (.09) 15.86 (.00)

Note: CU-GMM overidentification test statistics, with p-values in brackets. The number of lags refers

to the window length used in the Newey-West estimator of the long-run covariance matrix of the moment

conditions.
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Figure 1: SDF and return frontiers such that R and R1 share the mean
representing portfolio.
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Figure 2: SDF and return frontiers such that R and R1 share the uncentred
cost representing portfolio.
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Figure 3: SDF and return frontiers such that R and R1 share the centred cost
representing portfolio.
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Figure 4: SDF and return frontiers for size and book-to-market sorted
portfolios. R1 contains the market and the two Fama-French portfolios that

capture the size and value effects. Monthly data from 1952 to 2007.


