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Abstract

We introduce a class of cointegrated models that allows for conditional het-
eroskedasticity. Conditions for covariance stationarity and strict stationarity
are expiored by means of Monte Carlo simulation. Simulation techniques are
also used to highlight the finite-sample properties of the maximum-likelihood
estimator and the influence of rank restrictions. Forecasting properties are
illustrated using an exemplary data set.



1. Th sic model

Many systems of economic time series variables are known to be cointegrated in
the sense of Engle and Granger (1987). At the same time, in particular if the variables
are financiai high-frequency series, ihern
conditional variance. The most commonly used model for this phenomenon of time-
changing conditional variances and clustered volatility is the ARCH model by Engle
(1982) and its variants such as e.g. GARCH (Bollerslev 1986) and ARMA-ARCH
(Weiss 1984). Hence, the interaction of the two apparitions certainly deserve some
closer examination.

As long as ARCH effects remain "well-behaved" and do not entail the violation
of fourth-moments conditions in the marginal distribution, it can be shown that the
influence of ARCH on cointegration tests and parameter estimates disappears
asymptotically even if such an influence were present in smaller samples. Such general
derivations which continue to hold in "mild ARCH" situations have e.g. been presented
by Park and Phillips (1988). If fourth-moments conditions are violated, some of the
rationales for central limit theorems break down and the ground becomes more difficult
to explore. Hence, such exploration is typically done via Monte Carlo simulations (Kim
and Schmidt 1993, Kunst 1993a, Hecq and Urbain 1993). If ARCH effects become so
strong that even second moments cease being finite, handling of the situation becomes
even more difficult, as in these situations cumulated sums of processes cannot be readily
distinguished from the series proper on the basis of moments properties (also compare
Sampson 1990). Some theoretical work in this direction has been done by Hansen
(1992) who calls his model "bi-integrated” as it is integrated in its mean as well as in its
ARCH-like dependence structure of its volatility.! Fortunately, these "IGARCH"

processes do not constitute natural boundaries of economic reality as e.g. Nelson (1990)

! Hansen's bi-integrated model is not really an IGARCH model but similar. Hansen assumes that errors
variance follows a random walk which may create problems as then variances can become negative with
positive probability. In contrast, the IGARCH model does not permit negative variance by construction.



has shown, and strictly stationary ARCH processes can be found in an area where even
moments of order 2- A do not exist. It is tempting to view such processes in the stable
laws framework (see Phillips (1990) and Phillips and Loretan (1990) for recent
extensions of the stable laws model to integrated processes, Kunst (1993a) for a Monte
Carlo misspecification analysis) but the high serial dependence prevents even non-
standard stable CLTs from being applicable.

To highlight the features at stake rather than to funnel the investigation through
a narrow parameterization, we suggest the following model:

M, =X,  +PY ) +E,

AY, = a, (X, + Y, ) + &,

E(&fl,)=a,+a,el., +a, (=h,) (1.D
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Alternatively, (1.1) can be written as
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The bivariate process (1.1) is known to be covariance-stationary within the boundaries

prescribed by the upper two linear equations and the lower two quadratic equations
separately. It follows immediately that the whole process is covariance-stationary if the

matrices M ;and M , with

M. = l+a, af
e, 1+auf
qu al aZ
© b by

have all their eigenvalues strictly inside the unit circle. If M has one or two eigenvalues

(1.2)

on the unit circle, the bivariate process is stationary in its first differences. If only one of

the two M | eigenvalues is on the unit circle - in that case, only +1 and -1 are possible -



a simple change of co-ordinates produces a system with two variables, one of which is
stationary and the other one is difference-stationary. The eigenvalues of M, do not have
any direct impact on this property as long as they stay in their stability area, i.e., within
the unit circle.

Because ihie sysiem (i.1) changes its shape i
innovations series are allowed, it pays to look at the more general system class which
was in the focus of the factor-ARCH structures by Engle and co-authors. Under co-
ordinate transformations, (1.1) becomes a special case of the general model

AX, =o,(X,_, +BY,_) +g,

AY, =ay(X,, +BY,) +¢&,

E(e2)l, ) =a,+ael  +a,e5, +a,8, &y (1.3)

E(egzllx—x) =by+b&}_ +b.85, +hiE, 85,
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Note that the transformed system is not of the type (1.1) but that it allows for
dependence of conditional variances h;, on lagged squared errors as well as on cross-
products. It is easy to show - maintaining the assumption of conditional Gaussian
distributions - that such cross-terms do not exert any influence on conditions of
covariance stationarity. It is less easy to show that such cross-terms do exert 'some
influence on strict stationarity properties. (compare Kunst 1993b and the strand of
literature related to random coefficients models such as Tsay 1987, Bera et al. 1992)

The general model (1.3), however, is too general for practical purposes,
particularly as it does not accommodate for the restrictions on the coefficients @, b;, ¢;
imposed by the non-negative definiteness conditions on covariance matrices. Some
necessary conditions have been stated by Engle et al. (1984). They are non-linear
inequality constraints and appear rather cumbersome for practical applications. In
contrast, all definiteness restrictions are naturally contained in the matrix-vector form

e, 07JA ofe., O
. ' - , 1.4
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where the bold-faced e, = (g),,&y)", g is a non-negative definite 2 >2-mairix containing
the unconditional variance matrix of e, and A is a general non-singular matrix of
dimension 2 x2 used for transforming the original variates. A and B are non-negative
definite 2 >@-matrices.

Note that (1.4) restricts the general form (1.3) because of the block-diagonality
of the "inner" matrix. All features treateci below, however, are difficult to extend to the
case of a general inner matrix, hence (1.4) will be the model of interest in what follows.
Additionally, definiteness and identification restrictions become very involved for the
extended form. Engle and Bollerslev (1986, p.11) also considered (1.4) but did not
elaborate on it. Later, a different form was suggeste& by Engle and Kroner (1993),
whose so-called BEKK representation relies on the principle of expressing a quadratic
form as a sum of squared linear factors. The number of factors can be increased until
the BEKK representation encompasses the full form (1.3). The BEKK form is practical
as it naturally contains all definiteness constraints and identification can also be
imposed easily by zero restrictions. However, in case of a factor deficiency, it excludes
certain models from consideration whose value is dlfﬁcult to assess.

It is worth while to examine some of the possible rank deﬁc1enc1es in the
matrices A and B. If both of them are zero matrices, 1.€. rkA=rkB=0. then there are no
ARCH effects in the system, no matter which co-ordinate representation is chosen. If

rkA =0 but rkB=2, then all ARCH effects just depend on one factor of the type
ByEiin +2bs, 180y + B8 (1.5)

In consequence, there is a linear combination®f the e, representation at hand, provided
by A-le,, which has its first component non-ARCH and the second one depending on
the factor. This is a typical "common features" event in the sense of Engle and Kozicki
(1993).

Next, let tkA=0 but rkB=1. Then, there is a way to simplify the factor in (1.5) to
a simple square of a linear combination of e, ;. Though singular, B still has a well-

defined Banachiewicz decomposition of the form B=LDL’ with L non-singular with a



unit diagonal and D a diagonal matrix with d;;=0. The transformation e, =L'e,
“rotates” the system into a position where all heteroskedasticity is explained by (&,.)%
Although that transformation may appear to yield a natural transformation of the
system, the transformation A-le,is maybe even more attractive as it renders one of the
co-ordinates as non-ARCH. The condition for the two “naiurai” roiaiions io be
equivalent amounts to a reduced-rank condition on Al and B jointly. For more
applications of the "canonical” A-!transformation, see Section 2.

In the case of rkA=rkB=1, two "natural factors", i.e., linear combinations of the
original e,, determine the system’s ARCH properties. Hence, the system can be rotated
in such a way that its conditional covariance matrix just depends on past squares of the
two natural factors. Schematically,

é =Te, ¢, =Te,

wa:a:?)+algi-l (1.6)

Eé}, =03 +a,f5,.
Note that this case only obtains if two rank restrictions are valid. Whenever one of the
two matrices has full rank and the other one at least rank 1, such a representation is
impossible and there is no co-ordinate transformation which enables a representation of
the ARCH structure in individual past squares alone. From linear algebra (compare €.g.
Gel’fand (1965)) it is known that two separate quadratic forms can always be brought

into diagonal forms by coordinate transformations. Hence, the following representation

is always possible:
é, =Te, é,=Te,
Eéf; = U:(l)) +anélzx—l +allc.121—l (1.7)
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What then is the difference between rkA=1 or rkA=2 given that B is of full
rank? In the first case, three factors suffice to represent structures for both variates
while in the second case full four factors are needed. In detail, rkA=1 permits a

representation of the form



¢, =Te, ¢, =Te,
a2 _ (0 ~2

Ee,, =0y ta,€,., (1.8)
2 _ _(® ~2 ~2

Ee;, =0y 0,2, T8y,

It appears that these features are easier to interpret from the form (1.4) than from
vectorizations such as (1.3) even though the latter form is given preference in the
literature (see, e.g., Bollerslev and Engle (1993) or Engle et al. (1984)).

An important requirement from parameterized models such as (1.4) is
identifiability. Clearly, the given medel allows for scaling up A and B with separate
constants and multiplying the corresponding diagonal scaling matrix into A This issue
of non-identification can, however, be resolved by normalizing A, which can be attained
by e.g. trA=2 and thus including the identity matrix among the possible candidates. It is
less immediate how to avoid non-identification due to rotations between the two
quadratic forms e’Ae ande’Be. A somehow artificial restriction would be ayy 2173 or @y
by, thus expressing a tendency for A to represent the heteroskedasticity in e, and B to
represent heteroskedasticity in €,,.

In conjunction with the linear cointegrated part of the model, rhree different axis
transformations deserve consideration. Firstly, the rotation of the vector autoregression
into a decomposition where one variate is stationary and the other one is still
integrated. This rotation is prescribed by the solution vectors of a canonical correlation
problem (compare Johansen (1988)). Secondly, the transformation of the bivariate
ARCH model into the block-diagonal form where there is no conditional
heteroskedasticity in the cross-terms. This transformation is given by A Thirdly, a
possible axis transformation into positions where rank restrictions on Aand Bcome out

clearly, as in (1.6)-(1.8).



2. Stability conditions

The matrix A can be used to rotate the system in such a way that the covariance
of the errors is no more dependent on previous information. This representation is

cnmcehime -Vt et b L Anbncans
paluculally appivpiiatc 1ul ucivs

£=N'¢

!

with "T" for the transpose due to technical reasons. Then, (1.4) becomes
- A 0
E(EIEIVI—I)—ZO=I®e:-|[O B}’@C‘_I:

- A 0 . ., |[AAA_ O -
=1 ®e,_A’ o B ®Ae_ =1Qe Qe,_, = (2.1
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Collecting the time-constant part of the difference equation and taking unconditional

expectations, we obtain

Eglz = UOI + ({ll a:22 Eglz-l (2‘2)
Eeg, O b, by lEé;,.,

where the coefficient matrix must have both its eigenvalues less than one, hence (2.1)
has a stationary solution satisfying (2.2). Expressing such a condition in the parameters
of the original system (1.4) appears cumbersome, whereas the transformation to (2.1)
can be conducted quickly.

As with all ARCH models where heteroskedasticity merely depends on previous
innovations but not on the process proper, stability conditions for the ARCH part (2.1)
and the linear VAR part do not interact. Models with parameter interaction, as those of
Weiss (1984), Tsay (1987) or Kunst (1993b), necessarily have much more intricate
stability conditions. Here, covariance-stationary members of the model class are simply
described by the intersection of stable bivariate VAR systems and stable (1.4) ARCH

systems. It appears questionable, however, whether covariance stationarity is the natural



characterization of stability in a non-linear environment. Strict stationarity conditions,
however, are possibly intractable in the suggested model class.

Monte Carlo simulation techniques can be used to explore strict stationarity in
those regions where theoretical results do not permit insigﬁt. For instance, Kunst
(1993b) reporis simulations to fix the stability boundaries of a bivariate ARCH model
with conditional variance depending on observations. In Kunst (1994), these results are
extended to some univariate CHARMA-type models (compare Tsay 1987). Also by
simulation, Kleibergen and VanDijk (1993) replicate the theoretical stability boundary
of the GARCH(1,1) model previously established by Nelson (1990).

Figure 1 gives the simulated stationari‘ty bo"und‘aries for a simple bivariate

structure of type (1.4), in detail:
a, ta, O
0

0

h,| {1 Ta, da, 0
= 1 ®e;

[th] l:l]+ o 0 0 a, T,

0 0 w4, a

®e,, (2.3)

In Figure 1, the innermost line a@;+ay=1 is the natural boundary for the covariance-
stationary parameterizations. For the inner curve, A and B are diagonal matrices with
1cohstz;nt diagonal ( ‘t‘l=“t2=0)'. In this case, also for strict stationarity,‘l conditions can be
calculated, using the multivariate vérsibn of the‘resultsj by Bougerol and Picard (1992).
For more general cases, however, with non-diagonal A or B, such results do not exist.

The outer of the two central curves in Figure 1 was then found by simulating the
previous model with diagonal B but non-diagonal A, i.e.7#0. Note that non-negative
definiteness requires that Tbe in the closed interval [-1,1]. For the outer curve, Twas set
at + 1. Stability properties are unaffected by the sign of 1. For some more twith 0<t<1,
simulated boundaries were found to lie in the region between the two shown curves.
The strict stationarity area was found to be strictly monotonously increasing with Tt

The outermost line cbrresponds to the model with t,¥12=l. In this case, the

ARCH model becomes essentially univariate since



E_le,+ £,) =E, &} +E, &, =
(2.4)
=2 +(a, +a2)(su_, + 52,_,)2
and the condition for strict stationarity becomes simply for the sum @ +a, to be less
than the univariate boundary value given by Nelson (1990) as 3.5... In consequence,
though both 1, as well as 7, help expanding the stationarity area, reaction is much more
sensitive if both A and B are allowed to become non-diagonal.

For higher-order ARCH models or for general matrices A and B, the high
dimensionality of the parameter space makes graphical representations such as Figure 1
impossible. In general, a rather wide area of strictly stationary models without finite
second moments embeds the area of covariance stationarity. A somehow arbitrary
experiment is shown in Figure 2. The matrix B is scalar and A is assumed as diagonal
but with possibly different elements. aj; is set at the fixed value of 0.8 while ap) is
allowed to vary according to the parameterization a4y, = 0.8%p3 (p3 stands for the third
parameter). The simuiated stationarity boundary in the (bj),p3) plane is shown in
Figure 2. For b, =0, the boundary becomes a vertical asymptote, as in this case any
value of p; just increases the variance of the process without affecting its existence

properties.

3. The multivariate model

(1.4) can be generalized immediately to represent a multivariate model with

dimension k. Such model could be written as

E(etel"ll—l)z
e, 0 - OJA, 0 - 0Te. O 0
0 ' 0§10 A, 0 0 3.1
Y\ R & : . e O
0O O e, ,]lO O - A0 O e,
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Similar to the bivariate model, it appears natural to normalize the matrix A or to
impose conditions on the A; to warrant identifiability of the problem. Note that the

number of parameters contained in (3.1) is

3 2
k(M-—l)Hﬁ k3
2 2 2

k 3.2)

(not counting Zy). In contrast, multivariate versions of the general model (1.3) would

k(k+1)
2

imply ( )’ parameters which are, however, restricted by the definiteness

conditions. For k=2, the difference in the two numbers is small, with (3.2) yielding 8
parameters and (1.3) containing 9. For larger &, the difference becomes substantial.
Additional to the identifying restrictions, definiteness requires the diagonals of the

Cholesky factors in A; = LL;L;” to be non-negative. This condition can be imposed easily

during estimation.

4. Estimation

4.1 The maximum likelihcod estimator

Assuming conditional normality, the ‘log-lik‘elihood of the model (1.4) can be
developed from the log-likelihood of the errors as
UA,B, Aje) =

T-1

=~ Zlog(27) -+ Y log|Z, +( A ®e)diag(A,B) (A’ ®e, )| - (4.1)
=]

~15%e!(2, +(A e, Miag(A,B)(A’ ®e,,)) e,

where the notations e = (§,81,&2,.-§»&7) and e, = (g,,&,)" are used for
convenience. To obtain the process likelihood from (4.1), let us adopt Johansen's (1988)
notation af’ for the cointegrating matrix but keep I for the errors covariance matrix.
Neglecting the constant part of the likelihood, this yields for a homoskedastic system

K a, B, T;X) =const — Llog|Z| - 4(AX +afX ) (1 ®Z)(AX +afX ) (4.2)
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In an ARCH system, (4.1) and (4.2) can be merged into the full process likelihood
AA,B, A q,B,X) =

T-1
=const —4Y log|Z, + A®(AX; - X, Ba')iag(A,B) A’ ®(AX, - afX, )| -
=2

4.3)
AX!-X] iﬂa'){zﬁ +A ®(AX.’—; "X,'—zﬂa') x

xdiag(A,B)A' ®(AX,., - aBX,.,)| (&%, - apX,.,)

and the profile likelihoods in the directions of the linear and ARCH parameters look
like (4.2) and (4.1), respectively. Due to an argument parallel to Engle’s (1982)
regularity condition for ARCH models, the information matrix is block-diagonal with
the respective blocks ( o,f) and (A,B,A). Hence, maximization of the likelihood can be
conducted efficiently via iterations between the linear and the ARCH part. The profile
steps into the ARCH direction are somewhat complicated but are basically reminiscent
of least-squares regression (compare Engle (1982)). The profile steps into the direction

of (o, P) are best described as weighted reduced-rank regression.
4.2 Ordinary least squares

It is tempting to use standard ordinary least squares (OLS) in estimation, at least
for the linear part of the model. Unrestricted OLS should be consistent under rather
general conditions for the ARCH errors model and asymptotically normal at least for
"weak" ARCH structures (compare Weiss (1984)). Ordinary least squares estimation for
the ARCH model structure itself is certainly less recommendable and needs stringent
moment conditions even in rather simple models (eighth moments in the Weiss (1984)
model). However, even for ARCH structures, OLS is generally considered as a reliable
first indicator for the true structure and could be used at least as a starting value for an
iterative procedure.

We report a small-scale Monte Carlo experiment which highlights the fact that

OLS for the ARCH model can be severely misleading. However, it cannot be claimed in
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general that preliminary estimation by OLS 1is fruitless per se. Point estimates of all
coefficients are certainly extremely unreliable.
We generated 100 replications of 1000 observations each from the following

bivariate structure

AX: _05 xr—l 8!1
= 1 1] +
Ay, 0.7 Yol L& (4.4)
E_ge' =011, +(e/, ®I,)diag(0.4,0.2,0,09) e, ®1,)

(4.4) does not contain any A rotation. The cointegrating vector influences both variates
by error correction. Heteroskedasticity is regular in the first and strbng in the second
factor. The results are rather robust to the specification of the loading vector (-0.5 0.7y
as long as both loadings are different from 0.

Figure 3a shows a cross-plot between OLS estimates of the slope and intercept
of the cointegrating regression Y, = o + fX, + u, Although the cointegrating
regression is inefficient and kurtosis is high because of the strong ARCH in the second
factor, results appear satisfactorily clustered around the true values of (0.2, 1.0).
Correlation between th‘e two estimates is negative: if the slope is erroneously low, this is
counteracted by an increased intercept and vice versa‘.' Still, some intercept estimates are
as high as 0.4 but the main mass of the ldistribution is in the right place.

In striking contrast, OLS estimates of ARCH parameters evén from the full first-
order VAR - which is correctly specified - are unreliable as shown in Figures 3b and 3c.
The true value of 0.9 in the second factor is in the upper decile of the sampling
distribution, mean and median are around 0.5. Many estimates are negative, as they
have not been restricted a priori. However, even a priori restriction would not prevent
the occurrence of entirely erratic realizations of the spurious coefficients on lagged

cross terms such as €; ,.1€7 .}
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4.3 Maximum likelihood estimation

Returning to the maximum likelihood estimator described in Section 4.1, the
experiment in Section 4.2 was repeated using straightforward maximization of the
likelihood. To keep the system identified, the cointegrating vecior was parameierized as
(1, B’ and the matrix A was restricted to be unit-diagonal symmetric with off-diagonal
parameter A The non-negative definiteness of the matrices A, B, Zy was imposed by the

Banachiewicz decomposition, €.g.:

1 Ofa; O 1 a,
A= ,
a; 1jf0 a; 0 1

This way, the new parameters ), aj, a3 can vary freely and still generate non-negative
definite matrices.

Some of the results are depicted in Figures 4a-4c. Figure 4a cross-plots the
estimates of the loading coefficients a; and a, The observations are scattered in an
area which is rather tight around the true values (-0.5, 0.7), there is no obvious
correlation between coefficient estimates. The numerical summary in Table 1 shows
that the cointegrating coefficient B yielded the most accurate estimate with a standard
deviation of only 5 xI0-4 whereas most of the other parameter estimates still have
approximately 2 x10-2 This difference in orders of magnitude corresponds well to the
presumption that P estimation may be consistent of order T and of order T-!/2for all
other estimates. Anyway, the gain in precision relative to the OLS estimates reported in
the last section appears convincing.

Incidents of spurious A rotation were scarce and its standard error corresponded
in magnitude to the others at 0.03. Matrices Aand B were also estimated satisfactonly,
with slightly higher standard errors of order 6x10-2, i.e., proportional to the true value,
and a slight downward bias, at least for large true values. The behavior of these

estimates is also shown in Figures 4b-c. Estimates for the individual entries of X appear
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unbiased with standard errors of around 0.01, i.e., smaller than the ARCH coefficients
and the loadings.

We remark that behavior of the ML estimator depends critically on well-
specified starting values, particularly for £ Too small unconditional variances entail
frequent convergence of the iteration toward solutions with large ARCH and

persistently small Z;, i.e., the true solution is not found.

4.4 Restricted maximum likelihood estimation

In one of the designs used above, the rank of the second-variate ARCH matrix B
was | in the generated data but this restriction was not imposed during the estimation
stage. It may be interesting to know if imposing such restriction modifies the
performance of ML estimation. It may also be interesting to investigate the properties
of likelihood-ratio tests with the restricted model as null hypothesis. According to
conventional statistical theory, 2LR withe LR denoting the log-likelihood ratio statistic
should be - at least asymptotically - distributed chi-square with one degree of freedom.

With respect to the first question, some evidence is provided in Table 2. The
unsrestricted estimation results have been repeated from Table 1 to facilitate a
comparison. It is seen that the beneficial effects of imposing the (correct) restriction
rkB=1 are small and sample standard deviations or measured biases hardly change
from the unrestricted version. This means that, at least for a sample size of 1000 or
more, keeping an additional spurious parameter in the ARCH matrices does not have
any impact on the precision of ML estimation.

With respect to the second question, more than 100 replications would certainly
be necessary to enable the calculation of reliable significance points for the LR test.
Within the limits of the simulation exercise, the empirical 95% fractile was 4.13 which is
not too different from the theoretical chi-square value of 3.81. The empirical 99%

fractile was 6.73 (theoretical 6.63) and the empirical 90% point was 3.05 (theoretical
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2.71). The larger difference in the 90% points can be explained by the fact that,
probably due to the above-mentioned starting value problems, in approximately 20% of
the cases, the restricted likelihood was berrer than the unrestricted one which is
impossible and indicates that unrestricted estimation did not attain the global

maximum.

4.5 Weakly non-stationary cases

The basic design contains an ARCH effect in the second component that is very
strong but still fulfills the restrictions of covariance stationarity. Table 3 gives the results
of an experiment in which the value of 0.9 was increased to exactly 1.0 so that the whole
system became non-stationary in the sense of covariance stationarity, though it still was
strictly stationary. The limiting behavior of all estimates is not known in the univariate
IGARCH model and the same holds for our multivariate model. Nonetheless, changes
between the covariance stationary case in Table 2 and the covariance non-stationary
one in Table 3 are only slight. Also in this case, restricted ML estimation is not very
different from unrestricted ML. Only the estimate for b ;) becomes more precise which
is certainly to be expected from the experimental design. In contrast, the estimate for
b |, is less precise in the restricted version because of its exact dependence on the (small
but unrestrictedly estimated) first diagonal b 1) and the (large) b 2».

With regard to the likelihood-ratio test on the rank of B, again chi-square(1)
appears to be a good approximation. It is questionable whether detailed sample fractiles
should be taken seriously as the number of replications is rather small at 100. However,
if one is willing to do so, then deviations from the theoretical distribution now point into
the reverse direction, with the empirical fractiles at 2.79 (90%, theoretical 2.71), 3.18
(95%, theoretical 3.84) and 5.95 (99%, theoretical 6.63). Hence, the (true) null
hypothesis of rk B=1 is rejected less frequently in the tails (5% and 1%) than would be

appropriate and test power against the alternative rk ~ B=2 is probably affected adversely.
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4.6 Less error-correcting influence, misspecification of the cointegrating rank

The error-correcting influence - i.e., the "strength" of cointegration - in the basic
design is rather pronounced. To check on the way a weakening of the error-correcting
influence affects parameter estimation, three deviations from the basic design have
been considered:

(1) Reducing o from 0.5 to 0. Only the second component is affected by the error-
correcting effects.

(2) Setting o;=0a,=0. B becomes undefined and the cointegrating rank becomes 0, i.e.,
there is no cointegration. In this regard, it may be interesting to see whether the LR
statistic on the cointegrating rank is affected by the ARCH effects. This LR statistic
is known not to be chi-square distributed (see Johansen (1988) and Johansen and
Juselius (1990)).

(3) A second cointegrating vector y |+y, influences the second component. The whole
system is now stationary and the cointegrating rank is 2. The remark concerning
case (2) again applies. | |

The results for experiment (1) are summarized in Table 4. The precision of the
estimates appears comparable to the previous experiments. What is surprising, however,
is the extreme reaction of the likelihcod-ratio test to this very design. Empirical fractiles
exceed the chi-square(1) fractiles substantially and this phenomenon does not seem to
be explicable by starting value effects (significance points are 4.68, 32.59, and 105.14). It
is rather the asymmetry between th'e two components which could play a role as the LR
behavior in case (2) is less conspicuous. The rank restriction within the ARCH matrix of
the second component coincides with the fact that it is this component which carries the
error-correcting behavior.

Table S shows the results of the non-cointegrating design (2). Here, of course,

the estimates of the cointegrating parameter become unreliable, as this parameter



17

becomes not identified. All other parameter estimates are only marginally affected. The
LR statistic of the null hypothesis rk B=1 now has the properties known from Tables 1-3
again. The significance points are 3.88, 5.27, and 7.47, slightly exceeding the theoretical

fractiles. What is perhaps more interesting, is the LR statistic of the hypothesis rk  T1=0.
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A PPENDIX
Lemma: The representation (1.4) yields the "diagonal ARCH model” by Engle et al.
(1984) in trivial cases only, where conditional covariances ), are time-constant.

Proof: We first note that, according to the suggested model (1.4)

[hu hm] =3, +r'2'||el,—l‘A'el-l "q'rz‘3 - Be r—l.“-'J’ll "1'21 1
hi hy ['121e LAe,, Ae, Be Jl_/llz '122J
Hence, the "diagonal model” entails the six conditions

'112ﬂ12+'{I22b12 =0
Ay +Abyy =0
};lan +'1§22bn =0
Al + b, =0
AAgy+ ApAb,, =0
A Aoflyy + Ay Ab s =0

or, in matrix notation:
a,, a
— )}, /17;, il 12
[0 0] [ " "][b bn:l

2 a 2 a22
[0 0] = [A'fl ;{;2 {bl bgg]

12

a,, an
o 0]=[44 /1,21321[,)” bﬁ]

Remembering that we assumed A to represent a non-singular transformation, we now
separate cases according to the following criterion: |
Case A: All 3;%0 Case B: Some A;=0
ad Case A: If the first two right-hand-side matrices formed from « and b elements are
non-singular, then A becomes singular. This even happens if only one of the two
matrices is non-singular. Therefore, both matrices must be singular. This implies that
either there are entire rows or columns of zeros or B is proportional to A We first
concentrate on this proportional case. From the three equation systems, the
proportionality constant x must be
)%2 '1‘1’2 112'122

Trying to solve all three conditions at once yields a singular A, contradicting the

assumption.
ad Case B: For exaniple, assume A;;=0. Then, since a5,20 and b,,>0, from the second
equation system by, =0 or A5=0. The latter yields a singular Aand is impossible. The



first implies by, =0 and, from the first equation, as 2y, must not be 0, ¢;,=0 and ¢, =0.
The product element from the first equation  ALb, must also be O and there are two
cases. b, =0 gives the following situation: |

A is non-singular with A;;=0, A only contains the non-zero element a5,, and B=0. All
heteroskedasticity depends on &2, . It is easily seen that conditional heteroskedasticity
cannot influence the covariances.

On the other hand, Ay, =0 yields the following situation:

Ais anti-diagonal, A only contains @,,, and B only contains b,,. Here, ARCH structures
of the two series €, and &, are mutually independent. For reasons of identification, it
may be wiser to exclude this case from investigation.

Now assume Aj,=0 (the cases. Ay; =0 and Ay, =0 are then essentially covered). Then 2,
and Ay, are both non-zero to warrant non-singularity of ~A. From the second equation,
a12=a,=0. From the first equation, b'”=b12=-,-'0. Two cases are possible: a;;=0 or
221 =0 (or both).

If a;;=0, then all A=0, B just contains‘bzz, and A is non-singulaf with A,,=0. All
heteroskedasticity depends on  &;, , and cannot influence covariances.

If A,=0, then A is diagonal. A just contains a;, and B just by,. ARCH structures are
again mutually independent. With respect to identifying conditions, this is the more
natural representation of the system. ‘ =)



TABLE 1: Summary of results of maximurh-likelihood estimation for cointegrated
bivariate ARCH models. 100 replications of processes of length 1000.
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ay

ay

a)i

an

Design 1

est. mean  est.st.dev.
-.001 .018
.242 .019
-.50C 021
.699 .018
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.001 .029
.393 .050
.000 .038
199 .039
.005 .008
.001 .013
.879 071
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true value

est. mean
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105

Design 2
est.st.dev. true value

.020
.023

nn

o VS

.024
.0006
.035
.055
037
.040
.076
.070
.068
.010
.013
.016

~ A

)
N T Y N

TABLE 2: Summary of results of restricted and unrestricted maximum-likelihood
estimation for cointegrated bivariate ARCH models. 100 replications of processes of

length 1000.
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unrestricted
est. mean  est.st.dev.
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true value
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TABLE 3: Summary of results of restricted and unrestricted maximum-likelihood
estimation for cointegrated bivariaic IARCH models. 100 replications of processes of

length 1000.

est. mean

-0.000
0.242
-0.5C¢0
0.699
-1.000
0.001
0.394
0.001
0.197
0.007
-0.001
0.976
0.102
-0.¢00
0.100

unrestricted
est.st.dev.

0.018
0.019
0.021
0.017
0.0005
0.027
0.056
0.036
0.039
0.016
0.015
0.075
0.009
0.011
0.009

true value

est. mean
-0.080

0.242
-0.5C0
0.700
-1.000
0.¢01
0.392
0.001
0.199
0.001
-0.000
0.980
0.101
-0.001
0.101

restricted

est.st.dev.

0.018
0.011
0.021
0.017
0.0005
0.027
0.051
0.036
0.037
0.002
0.034
0.074
0.008
0.010
0.008

true value

TABLE 4: Summary of results of restricted and unrestricted maximum-likelihood
estimation for cointegrated bivariate ARCH models. Only one component suffers error-

correcting influence. 100 replications of processes of length 1000.

est. mean

0.099
0.242
-0.004
0.700
-1.000
0.000
0.382
0.002
0.203
0.007
-0.002
0.875
0.104
-0.000
0.100

unrestricted
est.st.dev.

0.015
0.020
0.021
0.018
0.0005
0.032
0.089
0.041
0.042
0.015
0.026
0.071
0.013
0.012
0.009

true value
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est. mean
0.099
0.242
-0.004
0.700
-1.0000
0.6C0
0.393
0.001
0.199
0.001
-0.001
0.871
0.102
-0.000
0.101

restricted

est.st.dev.

0.015
0.011
0.021
0.018
0.0005
0.033
0.051
0.036
0.039
0.002
0.033
0.071
0.009
0.012
0.008

true value
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TABLE 5: Summary of results of restricted and unrestricted maximum-likelihood
estimation for not cointegrated bivariate ARCH models. 100 replications of processes
of length 1000.
unrestricted restricted
est. mean est.st.dev. true value est. mean  est.st.dev. true value

iy 0.103 0.035 0.107 0.037

iy 0.105 0.024 0.106 0.025

o -0.001 0.002 0 -0.001 0.002 0
o 0.001 0.001 0 0.001 0.002 0

B 0.193 13.174 ' 3.437 45.361 .

A 0.001 0.031 0 0.003 0.035 0
aj, 0.390 0.066 4 0.396 0.091 4
ap 0.000 0.037 0 0.002 0.0310 0
a5 0.200 0.040 2 0.204 0.052 2
by 0.006 0.012 0 0.001 0.002 0
by, 0.002 0.021 0 -0.002 0.032 0
by 0.878 0.0693 9 0.877 0.078 9
oy 0.102 0.0118 1 0.102 0.0118 1
o1 -0.001 0.012 0 -0.002 0.013 0

.
—

G2 0.091 0.008 A 0.101 0.008
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Stationarity Boundaries for Bivariote ARCH

Znd curve: Al and A2 with canstant diagonal - 3rd curve: A2 diagonal, Al vith maximum off-diagonal
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residual OLS estimation of second-equation ARCH dynamics
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Moximum Likelihood Estimation of first-equation ARCH dynamics
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