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Abstract

A tool for user choice of the local bandwidth function for a kernel

density estimate is developed using KDE, a graphical object-oriented

package for interactive kernel density estimation written in LISP-

STAT. The bandwidth function is a cubic spline, whose knots are

manipulated by the user in one window, while the resulting estimate

appears in another window. A real data illustration of this method

raises concerns, because an extremely large family of estimates is avail-

able.
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1 Introduction

Smoothing methods are useful for gaining insights from data. See Eubank

(1988) [4], H�ardle (1990) [8], M�uller (1988) [13], Scott (1992) [17], Silverman

(1986) [19] and Wahba (1990) [22] for many interesting examples. In a num-

ber of cases, it is desirable to use di�erent amounts of smoothing in di�erent

locations. Here we study location dependent smoothing in the context of

kernel density estimation, although our ideas extend easily to other settings.

The smoothing parameter of a kernel density estimator is often called the

bandwidth. Basic concepts of the kernel density estimator are discussed in

Section 2.

A useful way to choose the bandwidth for a given data set is by an in-

teractive trial and error process. In particular, substantial insight comes

from being able to choose a bandwidth after looking at the estimate corre-

sponding to a previous choice. In modern computer interfaces this kind of

interaction is typically done using a mouse or similar mechanism by means

of a graphical device called a slider . With this graphical metaphor, the user

drags the thumb nail of the slider by moving the mouse to choose from a

range of values. The user can also click on the arrows at each side of the

slider to increment or decrement the bandwidth by a �xed factor. Then the

corresponding estimate is shown and the user can react by choosing a new

value.
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Figure 1: Biweight kernel density estimators for the income

data. Global bandwidth estimators, with bandwidths h = 0:02,

0:07, 0:24. The slider used to choose values is also shown.

The programming environment LISP-STAT, Tierney (1990) [20], provides

a convenient environment for use of such tools in a statistical application.

We have used LISP-STAT to develop KDE, a graphical package that allows

convenient interactive density estimation by implementing sliders and other

graphical mechanisms together with fast methods to compute and draw the

estimates. The sliders shown in Figure 1 are real KDE sliders, and the curves

shown in the �gure are computed by KDE for each of the bandwidth values.

An interactive analysis of a data set often results in a desire to use dif-

ferent amounts of smoothing in di�erent locations. A data set of this type

is the income data, as shown in Figure 1, discussed in Schmitz and Marron

(1992) [16]. This is a set of n = 7201 observations of family income, for the

year 1975, in the United Kingdom. The data have been scaled by dividing

by their mean. Figure 1 shows an overlay of three kernel density estimates,

using the Gaussian kernel with di�erent bandwidths. Note each of the three
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bandwidths reveals di�erent interesting structure. The undersmoothed curve

reveals a tight spike in the data at low incomes (shown to be due to \pen-

sioners" in the population in Schmitz and Marron (1992) [16]). The medium

amount of smoothing recovers the second wider peak, and the larger band-

width gives a smoother tail. An estimator which uses di�erent amounts of

smoothing in di�erent locations could mimic each of these estimates where

they perform well.
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Figure 2: Biweight kernel density estimators for the income

data. Location adaptive estimator in (a). Bandwidth function for

(a) shown in (b).

Figure 2a shows a location varying bandwidth kernel estimator for the

income data. The upper part of the �gure shows a kernel density estimate
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which uses the bandwidth function shown in the lower part. In this paper

we suggest making choice of this bandwidth function interactive. Our user

interface to the smoothing parameter function is a cubic spline. The function

is controlled by the user through manipulation of the knots of the spline,

shown as integers in Figure 2b. Knot locations are changed through a mouse

\click-and-drag" operation in the \bandwidth window" while the resulting

density estimate is recomputed and redrawn in the upper window.

The implementation of this idea shown here is built with kde objects,

using LISP-STAT. See, for example, the estimator in Figure 2a, with its local

bandwidth function in Figure 2b. Details of the implementation are given in

Section 5.

A detailed illustration of our interactive local bandwidth method, applied

to a particular data set, is given in Section 3, where a number of di�erent

local bandwidth estimates are considered for a single data set. An important

lesson is that the number of possible estimates available is extremely large.

Also it is very easy to misrepresent the data. In particular important features,

such as modes, can be moved around, as well as added or removed from the

estimate, nearly at will. Hence interactive local smoothing parameter choice

needs very careful use in real applications.

In Section 4 we investigate the set of all estimates that are available from

consideration of arbitrary local bandwidth functions.

We do not study data based local bandwidth selection, but our results

suggest care needs to be taken in that area. In particular, it seems quite easy

to arrive at an uninformative or even misleading result. There is clear indi-

cation that precautions against this are needed. This could be accomplished

by plotting bandwidth functions as we do here, although other graphical

displays could be e�ective as well.

2 Kernel density estimation

Given a set of data X1; :::; Xn, the kernel density estimate is

bfh(x) = n�1
nX
i=1

Kh(x�Xi); (1)

where h is the bandwidth, and where Kh(�) =
�
1

h

�
K( �

h
), for a \kernel func-

tion" K, which is often taken to be a symmetric probability density. Note
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that h controls the \width" of the kernel function (e.g. it is the standard

deviation if K is the standard normal density). The curves in �gure 1 show

this estimate, for 3 di�erent values of h. See Silverman (1986) [19] and Scott

(1992) [17] for useful discussion of many aspects of this estimator.

Many approaches to location varying kernel density estimation have been

suggested, including the nearest neighbor methods of Loftsgaarden and Que-

senberry (1965) [12] and others, the variable kernel methods of Breiman,

Meisel and Purcell (1977) [2] and Abramson (1982) [1], the shifted kernel

method of Samiuddin and El-Sayyad (1990) [15] and the transformation

method of Wand, Marron and Ruppert (1991) [23]. For discussion of the

many possibilities, and overview of the �eld, see Chapter 5 of Silverman

(1986) [19], Jones (1990) [9] and Jones, McKay and Hu (1994) [11].

Here two main types of bandwidth variation are studied. The �rst is

\depending on location x", where h in (1) is replaced by a function h(x).

This includes the nearest neighbor estimators. Insight into this approach

comes from focusing on each point x, and viewing the kernel estimate as

based on the number of data points in a \nearby window". The width of

that window changes with location x.

The second type of bandwidth variation studied here is \depending on

data values Xi", where h in (1) becomes h(Xi). This is usefully understood

by thinking of the kernel estimate as being the \sum of small probability

masses", as illustrated in �gures 2.4 and 2.5, page 14, of Silverman (1986).

This type of estimate achieves di�erent amounts of smoothing in di�erent

locations by allowing these masses to have di�erent widths.

An important di�erence between the two types of estimates is that a ker-

nel density estimate with bandwidth depending on data values is constrained

to have total area under the curve equal to one. No such restriction applies

when the bandwidth depends on x, and as seen in Section 4, the area can be

any positive value.

3 An illustration

The \Chrondite data", were made famous in the \bump hunting" literature

by Good and Gaskins (1980) [7]. Here we analyze the same scaled version

of the data with location varying bandwidth kernel density estimators. The

biweight kernel is used in all examples in this section. Location varying
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smoothing, with bandwidth depending on location, i.e. h(x), is done in all

examples until Figure 7.

Figure 3a shows the result of a reasonable amount of global smoothing.

Figure 3b shows that the same bandwidth was used everywhere. This amount

of smoothing reveals 3 modes in the data, as found by Good and Gaskins,

and several other \bump hunters" since.
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Figure 3: Density estimate for the Chrondite data in (a), band-

width function in (b). Same bandwidth used in all locations, shows

trimodal structure.

Figure 4 shows the result of some manipulation of the bandwidth function.

Note that the �rst mode in Figure 3 has now been separated into two modes,
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by using a relatively small bandwidth in that region. The second mode in

Figure 3 is now smaller with a di�erent shape. The third mode is still about

the same, but note that a spurious �fth mode has appeared near x = 38,

where there is no data! This last spurious mode was generated by using a

large bandwidth function there, which \reached out for mass" to the regions

with data. Note that location varying bandwidth estimation has the potential

for serious misrepresentation of the data.
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Figure 4: Density estimate for the Chrondite data in (a), band-

width function in (b). Now see 5 modes, with relative sizes and

shapes di�erent.

Figure 5 shows the result of an attempt at further misrepresentation of the

data. Note that the �rst mode in Figure 3 has been completely obliterated
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by a very large bandwidth for 17 < x < 24, although two spurious modes

created by the same e�ect as the �fth mode in Figure 4 have appeared at

x = 17 and x = 24. The second mode in Figure 3 has become huge, with one

spike separated on the right side, by a very small bandwidth in that area.

The third mode of Figure 3 has also been exaggerated.
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Figure 5: Density estimate for the Chrondite data in (a), band-

width function in (b). Density shape very di�erent, and not rep-

resentative of the data.

An extreme example is shown in Figure 6. By taking the bandwidth

function very large in the range of the data, the estimate is essentially 0

there (note that for any x, limh!1
bfh(x) = 0). The estimator does show two
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modes, but these are outside the range of the data. These are caused by the

same \reaching out" e�ect that generated the �fth mode in Figure 4.
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Figure 6: Density estimate for the Chrondite data in (a), band-

width function in (b). Estimate is 0 in the region containing the

data, has two bumps well outside the range of the data.

Figure 7 gives yet another misrepresentation of the data. Now the second

mode of Figure 3 appears much bigger than the others. Figure 7 also shows

that there is a di�erence between allowing the bandwidth to depend on loca-

tion, h(x), and on the data points h(Xi). In general, we found that the h(x)

type of bandwidth variation was somewhat more 
exible (not surprising in

view of the fact that it's area is not constrained), but also more prone to
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spurious modes, as seen here. Especially important is that it does not seem

possible to create modes that appear outside of the range of the data using

h(Xi). But the most important lesson is that both types of location varying

bandwidth deserve to be treated with a good deal of healthy skepticism, be-

cause the impression one receives from the estimate is easily manipulated in

any of many possible directions.
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Figure 7: Density estimate for the Chrondite data in (a), band-

width function in (b). Much di�erent shape from other examples,

also shows varying bandwidths depending on location, h(x) (solid

curve), and depending on data points, h(Xi) (dashed curve).
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4 Which curves can be estimates?

The example in Section 3 suggests that for a given set of data and a given

kernel, the set of possible kernel density estimates is very large. Here this set

is investigated, when the kernel function is a symmetric probability density.

For bandwidth variation depending on the data values, the set of possible

kernel density estimators is a set of mixture densities, of the form:(
f(x) =

nX
i=1

1

n
Khi

(x�Xi) : h = (h1; :::; hn) 2 <
n

)
:

This allows a wide range of possible features, especially number and location

of modes. For example, when the kernel is Gaussian, given any point x0
in the range of the data, a member of this family has a unique mode at x0
(choose very large bandwidths for all data points, except for one point on

each side of x0, adjust those bandwidths to put the mode at x0).

For bandwidth variation depending on x, even more is possible. To un-

derstand this, for a given continuous kernel K and data setX = fX1; :::; Xng,

call the set of points in <2, that some kernel estimate passes through, the

\envelope" of the estimate:

Env(K;X) =
n�
x; bfh(x)� : x 2 <; h > 0

o
:

Note that any function whose graph is contained in Env(K;X) is a varying

bandwidth kernel estimate for some bandwidth function h(x).

To study the set Env(K;X), let bK;X(x) = sup
h>0

bfh(x) denote the upper
boundary. It is straightforward to show that Env(K;X) consists of all points

between the x-axis and the curve bK;X. This shows that the area under this

type of bandwidth varying density estimate can be arbitrarily close to 0. The

curve bK;X(x) is studied next.

To �nd an upper bound, note that from

sup
h

����xh
����K �

x

h

�
= sup

t

tK(t)

it follows that

sup
h

Kh (x�Xi) =
K

jx�Xij

;
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where K = sup
t>0

tK(t). Hence,

bK;X(x) = sup
h

n�1
nX
i=1

Kh (x�Xi) � n�1
nX
i=1

K

jx�Xij

; (2)

i.e. is bounded by a kernel estimate with a nonintegrable kernel proportional

to 1=x.

This same shape also appears in a lower bound. Assume that \K contains

an � rectangle" in the sense that K (x) � � for all x 2 [��; �]. Then for each

x 2 < and for i = 1; :::; n, the bandwidth choice h =
���x�Xi

�

��� gives
bK;X(x) �

bf
j
x�Xi

�
j
(x) =

1

n
���x�Xi

�

���
nX

i0=1

K

0@x�Xi0���x�Xi

�

���
1A �

�2

n jx�Xij

: (3)

This makes it clear that the area under this type of bandwidth varying kernel

density estimate can be in�nite.

The upper and lower bounds in (2) and (3) show that the boundary of the

envelope is intimately connected with the function 1=x. An approximation to

bK;X(x) for the Chrondite data is shown in Figure 8. The envelope in Figure

8b was constructed by taking the maxima of a large family of Gaussian

kernel density estimates, shown in Figure 8a. Figure 8b also contains a good

constant bandwidth estimate, in particular the method of Sheather and Jones

(1991) [18], which shows the area of the envelope is much bigger.
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Figure 8: Envelope for the Chrondite data in Figure 3. Large

family of kernel density estimates are overlaid in (a). Maxima of

these gives envelope boundary in (b), together with a single good

global bandwidth estimate.

Figure 8a shows where the various features in the envelope come from.

The thin spikes correspond to single data points. The fatter spikes are several

data points very close together. The 
at spots come from relatively large

bandwidths. The rounded corners near the fatter spikes come from a fairly
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wide range of di�erent bandwidths. As expected from the above, the tails of

the envelope go down very slowly (� 1

jxj
for jxj ! 1).

5 Details of the implementation

We have used LISP-STAT to implement the techniques of this paper. There

are two kind of programs involved: interaction programs and computation

programs. Interaction programs are for building the graphical objects that

show the curves on the screen, read the mouse actions, and interpret what

the user wants to do with these actions. Computation programs are used

to compute density estimates given the bandwidth function (constant or

variable, variable on data or on location).

LISP-STAT provides useful tools for the development of graphical inter-

faces, see Tierney (1990) [20]. We have used this object oriented environment

to build KDE objects. This provides the user with easy adjustment of the

parameters and options of kernel density estimation, see Udina (1995) [21].

More information about the software is available, using some WWW reader,

in http://libiya.upf.es/ or by ftp in halley.upf.es:pub/stat/. It is

available also in statlib, ? we will put the reference here when we have it ?.

The variable bandwidth method shown in �gures 2-7 has been implemented

in KDE objects. By means of the mouse, the user can move the knots. From

the knots, a cubic B-spline (see deBoor (1978)[3]) passing through the knots

is computed and it is used to compute the bandwidth for each location. A

possible extension of the methods given here is to replace the knot controlled

cubic splines with B�ezier-like splines (see Newman and Sproull (1979) [14]

or Foley and van Damm (1982)[6]). This will allow more convenient user

manipulation of the bandwidth function, via handles that are not points on

the curve. In addition to better manipulation of the bandwidth function it

would be more di�cult to reach values outside a reasonable range as in �gure

6.

We use binning methods to compute the density estimates. This means

that data are discretized to a grid of values, usually a grid size of some hun-

dreds is used. For a comprehensive discussion of these discretized methods,

see Fan and Marron (1994)[5]. Here we use the linear binning method to

discretize the data, though our software allows other methods. This binning

process is of great relevance when dealing with big data sizes as in the income
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data example presented in section 1. With these preprocessed data, updating

methods as described by Fan and Marron (1994)[5] are used to compute the

density estimate. This method requires that the kernel function be a poly-

nomial, so the beta family is quite useful. The updating method consists

of rearranging the polynomial in such a way that the coe�cients involved

can be updated when passing from one grid point to the next one with few

operations.
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