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Abstract

We use a simulation model to study how the diversification of electricity generation port-

folios influences wholesale prices. We find that technological diversification generally leads

to lower market prices but that the relationship is mediated by the supply to demand ratio.

In each demand case there is a threshold where pivotal dynamics change. Pivotal dynamics

pre- and post-threshold are the cause of non-linearities in the influence of diversification on

market prices. The findings are robust to our choice of behavioural parameters and match

close-form solutions where those are available.

Keywords: Electricity, market power, simulations, technology diversification.

∗Previous versions of this paper have been presented at INFORMS Annual Meetings (Pittsburgh and Seattle),

ICCMS (Geneva), Swiss IO Day (Bern), the CCRP Regulation and Competition Workshop (London), the Trento

Summer School in Adaptive Dynamics, EURO (Prague), EARIE (Valencia), and seminars at City University

(London) and EPFL (Lausanne). We acknowledge comments from the participants, Ann van Ackere, Antonio

Conejo, Joanne Evans, Mireia Jofre-Bonet, Andreas Krause, Tarjei Kristiansen, Giulia Iori, Fernando Oliveira,

José Olmo, Willem Smit and Anke Weidlich.
†Department of Economics, City University of London, Northampton Square, London EC1V 0HB, UK. Tel.

+44 (0) 20 7040 4576. E-mail: a.banal-estanol@city.ac.uk. Web: http://www.staff.city.ac.uk/a.banal-estanol/
‡Department of Economics and Business, Universitat Pompeu Fabra (c/ Ramon Trias Fargas, 25-27. 08005

Barcelona, Spain. Tel. (+34) 93 542 1766. E-mail: augusto.ruperezmicola@upf.edu) and IMD Interna-

tional (Chemin de Bellerive, 23, Lausanne. CH-1006, Switzerland. Tel. (+41) 21 618 0716. E-mail: au-

gusto.ruperezmicola@imd.ch). Web: http://www.ruperezmicola.net

1



1 Introduction

Electricity is a non-storable, undifferentiated commodity, delivered into a market with low de-

mand elasticity, high security of supply requirements and wide seasonal variations. As a result,

the industry accommodates a wide range of generating technologies, and firms own not one but

several plants. Some generators are technologically diversified and own nuclear plants on the

base-load as well as high-cost thermal units. For example PG & E, a large US utility, owns

hydro, nuclear, thermal and renewable plants (PG & E Corporation, 2006). Others are special-

ists, focusing on only one technology. Until recently, British Energy’s generation portfolio was

formed exclusively by eight nuclear generating units (British Energy, 2006).1

The effect of technological diversification on prices is an important question in industries with

undifferentiated output but different production technologies. A market in which generators are

specialised could exhibit more market power because the price-setting part of the merit order

is more concentrated. However, in electricity pools, specialised high-cost generators have less

incentives to exert market power because they lack base-load plants to reap the benefits. In

contrast, diversified firms have incentives to use their high-cost plants to increase market prices

and thereby increase the profit on the base-load, but may not have enough price-setting capacity

to do so.

In this paper, we address the general questions of “what is the shape of the diversification to

prices relationship?” and “what are its determinants?”. Specifically, we study different markets

where a generation duopoly own varying amounts of base- and peak-load capacity that is bundled

into a high- and a low- cost plant. In order to isolate the portfolio effects, we keep market

concentration constant, as well as the market base-load and high-cost capacities. Our trading

environment is a multi-unit, compulsory, uniform-price auction. This set-up, however, is often

characterised by the presence of a manifold of non-Pareto ranked Nash equilibria (von der Fehr

and Harbord, 1993). To achieve predictions, we use an inductive selection method based on the

adaptive theory of reinforcement learning put forward by Roth and Erev (1995).2

Our main policy findings are that more diversification often leads to lower market prices.

This relationship, however, is non-monotonic and mediated by the market excess capacity. For

each demand to supply ratio, we identify a diversification breaking point, estimated from the

simulations, where dynamics change. Up to the breaking point, more intense competition due to

1British Energy has recently started to operate one coal-fired plant.
2Papers which also use the Roth and Erev method in the electricity context include Nicolaisen et al. (2001),

Rupérez Micola and Bunn (forthcoming) and Rupérez Micola et al. (forthcoming).
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higher diversification always leads to lower prices. In low-demand situations, prices drop further

after the breaking point. In high-demand cases, instead, further diversification leads to higher

prices, but prices remain lower or equal to those under perfect specialisation.

We show that the non-monotonic diversification/prices relationship is caused by regime

changes in the firms’ incentives and market power. Interestingly, the estimated breaking points

are shown to (statistically) match the theoretically predicted thresholds at which the number of

“pivotal” plants change.3 In our setup, there is always one and only one pivotal plant under little

or no diversification. After the threshold, the number of pivotal plants changes. In low demand

situations, the market moves from one to no pivotal plants, which results in further competitive

pressures. In high demand cases, there are two peak-load pivotal plants post-threshold, which

leads to some implicit coordination and higher prices.

In spite of its importance, the literature on generation portfolios as a source of market power

is relatively sparse. Arellano and Serra (2005) show how, in cases where a regulator uses peak-

load marginal costs to determine wholesale prices, generators can exercise market power by

increasing the share of peak technology in their portfolio. They conclude that market power

in this context should not be measured by the traditional price-cost margin or concentration

measures, but by the distortion in the composition of the generating portfolio due to regulatory

incentives. Bushnell (2003) uses a Cournot model to analyse competition among several firms

when each possesses some hydroelectric and thermal generation resources. He concludes that

firms may find it profitable to allocate more hydro production to off-peak periods than they

would under perfect competition, or if they did not act strategically. Garcia et al. (2005)

analyse the price-formation process in an infinite-horizon model where hydroelectric generators

engage in dynamic price-based competition and show how simulations with a basic learning

algorithm converge to the Markov Perfect Equilibrium. Bunn and Oliveira (2007) also use a

simulation to model the interaction between an electricity market and a plant swapping game.

They identify a symbiotic interaction between the two markets: initial situations where firms are

perfectly diversified evolve, via plant trading, into lower electricity prices than those in which

firms were originally specialised.

The remainder of the paper proceeds as follows. In Part 2, we describe the model and

simulation procedure. The results are presented in Part 3 and we conclude with a short discussion

in Part 4.
3A plant is pivotal if the quantity demanded exceeds the sum of production capacities of all other plants and,

as a result, the plant is necessary to fulfill demand.
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2 Model and Simulation Procedure

2.1 Market structure

Our model incorporates key features of electricity markets in the short run. Two companies that

compete for the supply of the market own a mix of low (e.g. nuclear) and high (e.g. thermal)

marginal cost capacity.4 Denoting the generating companies as 1 and 2 and the overall market

capacity as K, the capacities of their respective low (l) and high (h) cost plants are

kl1 = kh2 = (1− α)K/2 and kh1 = kl2 = αK/2,

where α ∈]0, 0.5[ represents the degree of portfolio diversification. In the case of specialisation
(α = 0), company 1 is a low-cost specialist and company 2 is specialised in the high-cost tech-

nology. Portfolio diversification grows with α, a growing proportion of the base-load generator’s

capacity is exogeneously replaced with high-cost units. Symmetrically, the generator’s high-cost

capacity is replaced with base-load. In the case of full diversification (α = 0.5), each company

holds the same amount of low- and high-cost generating capacity. This formulation isolates the

effects of portfolio diversification because, while allowing for different degrees of diversification,

the total capacity of each company is kept constant,

kli + khi = K/2 for i = 1, 2,

as are the market aggregates of low- and high-cost capacities,

kj1 + kj2 = K/2 for j = l, h.

Marginal costs are assumed to be constant; normalised to 0 for the low-cost plants and equal to c

for the high-cost plants, and there are no grid constraints.5 Although relevant in the long term,

we do not deal with entry and exit of firms, capacity expansion, the use of long-term contracts

(as in e.g. Baldick et al., 2006), ancillary and capacity payments.

4The model could be easily extended to other more realistic market configurations, including all sorts of

oligopolies and the existence of a competitive fringe. However, our analysis in a stylised market is more transparent

and comparable to previous literature.
5The addition of network constraints would undoubtedly make the analysis richer but it would also make it

more complicated to dissentangle effects due exclusively to technology diversification from those arising from local

market power exerted by relatively small players.
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2.2 Market rules

Trading takes place through a multi-unit, compulsory, uniform-price auction. Suppliers submit

simultaneous single-price bids at which they are willing to sell up to the capacity of each plant.

Each firm, thus, submits a piecewise “step” supply function.6 Possible bids are bounded between

marginal costs and Ψ, with Ψ being the maximum “reasonable” price.7

We model the market demand Q as fully inelastic,8 drawn from a uniform distribution in the

interval [Q̄− ε, Q̄+ ε], where Q̄ is its expected value and ε accounts for the small uncertainty

typical in day-ahead forecasting.9 We assume that there is always some system overcapacity,

Q̄+ε < K, but demand always exceeds the market aggregate of low-cost capacity, Q̄−ε > K/2,

consistent with the normal operations of many de-regulated energy markets.10

An independent auctioneer determines the uniform market price P by intersecting the ad

hoc supply function with the realised demand. She assigns full capacity, qji = kji , to the M

plants with bids below the market price; the remaining capacity, qji = Q−P{i,j}∈M kji , to the

plant with a bid equal to the market price;11 and zero sales, qji = 0, to those bidding above the

market price. Profits for each company are

πi = P qli + [P − c] qhi for i = 1, 2. (1)

2.3 Multiple equilibria and inductive selection

This trading setting often presents a manifold of non-Pareto ranked Nash equilibria (von der Fehr

and Harbord, 1993; Crawford et al., 2006). For example, if there is full diversification, having

one generator bidding the maximum price for the high-cost unit, while the other generator bids

at marginal cost, is part of an equilibrium if demand is relatively high.

Proposition 1 Assume that generators are diversified (α = 0.5) and the expected demand is

high, Q̄ > 3/4. Then, there is a manifold of non-Pareto ranked Nash equilibria.

6Piecewise supply functions have been introduced, among others, by Hobbs and Pang (2007).
7This upper price ceiling can be understood as a limit triggering regulatory intervention or the cost of alter-

native, expensive, load fuels to which the system administrator could switch at short notice if prices exceed Ψ. It

also reflects high cost back-up power generation facilities owned by many industrial users.
8The literature has established the extremely low price elasticity of short-term electricity demand, originating,

among others, from the lack of real-time metering systems (e.g. Stoft, 2002).
9The small uncertainty is introduced for the sake of realism, but its absence would not alter our findings.
10For example, the UK energy system includes a reserve margin of about 20% of expected peak demand.
11 In case of a tie, the selling plant is selected randomly.
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Proof. Since the two firms are symmetric, denote the price-setting firm as Firm 1.We are going

to show that (bl1, b
l
2, b

h
1 , b

h
2) = (0, 0,Ψ, b) is a Nash equilibrium for c ≤ b < bb, where bb will be

defined below. If bl1 = bl2 = 0, bh1 = Ψ and bh2 < Ψ then P = Ψ and π1 = Ψ K/4 + [Ψ− c]

(Q̄− 3/4K) and π2 = Ψ K/4 + [Ψ− c] K/4. The strategy of Firm 2 is clearly a best response

to the strategy of Firm 1 because both quantity and market price are the maximum possible.

Setting bl1 = eb ≥ b = bh1 cannot yield higher payoffs for Firm 1 than if bh1 = eb and bh1 = b. Then,

by setting bl1 = 0, Firm 1 has no influence in the payoffs. Finally, setting bh1 = Ψ is a best

response as long as

ΨK/4 + [Ψ− c] (Q̄− 3/4K) > bh2K/4 +
h
bh2 − c

i
K/4

or

bh2 <
bb = Ψ ¡Q̄−K/2

¢
+ c(K − Q̄)

K/2
.

One can easily check that c < bb < Ψ.
Standard comparative statics analyses rely on the Nash specification to determine the so-

lution. Hence, multiple equilibria make it difficult to come up with an answer to our research

question, which should be based on a comparative statics exercise with respect to the degree of

diversification.

In equilibrium multiplicity cases, a selection method is necessary to choose amongst them.

In broad terms, there are two schools of thought in the area of equilibrium selection (Haruvy

and Stahl, 2004). On the one hand, we have deductive selection — based on reasoning and

coordination in focal points — and, on the other hand, we have inductive selection — based

on adaptive dynamics. Until recently, deductive principles have dominated the equilibrium

selection literature. Existing deductive mechanisms, however, have been shown to do poorly

in experiments (see e.g. Van Huyck et al., 1990). Simple adaptive learning dynamics, instead,

often yield good equilibrium predictions (see e.g. Roth and Erev, 1995).

Reinforcement models are widely used adaptive learning mechanisms (see e.g. Nicolaisen et

al., 2001, Rupérez Micola and Bunn, 2007, Rupérez Micola et al., 2007, and Veit et al., 2006).

They are based on the law of effect, whereby actions that result in positive consequences are

more likely to be repeated in the future while those that result in negative consequences are

less likely to be replayed. One of the main strengths of reinforcement models is that one does

not need to make assumptions on the information that players have about strategies, history of

play and payoff structure of the other players. This is especially useful to model very volatile

markets such as wholesale electricity.
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2.4 Behavioural learning

In order to model learning, we adopt in particular the well-known and practical-to-implement

reinforcement learning method put forward by Roth and Erev (1995) —denoted as R-E. The

previously described bidding competition is repeated for a finite number of periods. Behavioural

learning takes place by repeating the following three steps in each period.

STEP 1: Generators submit price offers for each plant according to a plant-specific probability

distribution over the set of possible bids.

For simplicity, the feasible price offer domain for each plant is approximated by a discrete

grid. For each plant, generators choose among S possible prices, equally spaced between the

minimum and the maximum price offer. That is, the sets of possible bids for the low- and

high-cost plants, Bl and Bh, range from 0 and c,12 respectively, up to Ψ,

Bl = {s (Ψ/S) | s = 1, ..., S } , (2)

Bh = {c+ s (Ψ− c) /S | s = 1, ..., S } . (3)

Each bid is generated by an “action s”. Bids generated from lower actions are more competitive,

i.e. closer to marginal costs.

In each round t, each generator i selects an action s for plant j with a likelihood or “propen-

sity” rji,s(t). The probability of an action being played is given by its propensity divided by the

sum of the propensities of all possible actions,

pji,s(t) =
rji,s(t)PS
u=1 r

j
i,u(t)

. (4)

Propensities for all actions are initialised to the plants’ maximum per-period profit, i.e. rji,s(1) =

Ψkji , so that all actions have the same initial probability, p
j
i,s(1) =

1
S for all s, i and j.

STEP 2: The auctioneer determines the market price by intersecting the ad hoc supply

function with the realised demand.

As explained above, the auctioneer determines the price and the individual quantities by

intersecting the ad hoc supply function with the realised demand, which is assumed to be

independently distributed across periods. Subsequently, the price and the individual quantities

are communicated independently to each generator.

12An alternative is to allow expensive plants to bid below c so that they have to find out for themselves that

this is not profitable. This slows the learning process down but does not alter our results. Thus, as most of the

electricity simulation literature, we do not allow firms to bid below marginal costs.
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STEP 3: Each plant-specific probability distribution is adjusted based on the performance of

the bid used.

At the end of each round, plants reinforce the selected action, a, through an increase in its

propensity that is equivalent to the performance of the company as a whole, πi(t). Actions that

are similar, i.e. a−1 and a+1, are also reinforced but to a lesser extent, precisely by (1−δ)πi(t)
where 0 < δ < 1 (“persistent local experimentation” in the terminology of R-E). All propensities

are discounted by γ (“gradual forgetting”) and actions whose probability falls below a certain

threshold are removed from the space of choice (“extinction in finite time”). The pre-extinction

propensities for the following period rj0i,s(t+ 1) are

rj0i,s(t+ 1) =

⎧⎪⎪⎨⎪⎪⎩
(1− γ) rji,s(t) + πi(t) if s = a

(1− γ) rji,s(t) + (1− δ) πi(t) if s = a− 1 or s = a+ 1

(1− γ) rji,s(t) if s 6= a− 1, s 6= a and s 6= a+ 1,

and the final propensities, corrected by the extinction feature, are

rji,s(t+ 1) = rj0i,s(t+ 1)I{ r
j0
i,s
(t+1)

S
u=1 r

j0
i,u

(t+1)
>μ}

, (5)

where I is an indicator function that takes value 1 if the condition between brackets is satisfied

and zero otherwise.

These three steps are repeated for a finite number of periods T . Although generators refine

their strategies through learning, there always remains some degree of uncertainty. We therefore

perform many simulation runs and we define convergence in terms of the across-run average

standard deviation of prices. We require the finite number of periods T to be such that the

initial average standard deviation is reduced below a given threshold. Our simulations produce

a large dataset, which is described in the following subsection, and analysed econometrically in

the subsequent section.

2.5 Simulation parameters and dataset

The end-user reasonable price ceiling is set at Ψ = 200, with a discrete grid of S = 100 possible

prices. Total capacity is set to K = 300, so that each generator’s capacity is K/2 = 150.

Marginal costs for the high-cost plants are c = 100 and zero for the low-cost plants.

We perform simulations for a discrete grid of fourteen expected demand cases, Q̄ = {160,
170..., 290}, corresponding to market expected excess capacity of 46.66% through 3.33%, with

a small uncertainty (ε = 5). If, for example, Q̄ = 240 then Q ∼ U [235, 245]. For each instance,
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we consider fifty one diversification levels, α = {0, .01, .02, ..., .50}. Further, we check the
robustness of the analysis to changes in R-E parameters by taking nine combinations of the

learning parameters, γ = {0.0025, 0.005, 0.0075} and δ = {0.25, 0.50, 0.75}, with μ = 0.0005

throughout.

For each specification, we have performed fifty simulation runs. We consider that convergence

is attained if the average standard deviation is reduced by 1/4. This occurs around period 200.

We allow each simulation to run for 500 periods.13 We then build a dataset consisting of average

prices for the last 200 periods (301 to 500), for each simulation run, α, Q̄, γ and δ.14 Our dataset

includes 50× 51× 14× 3× 3 = 321, 300 observations. As representative cases, we focus on the
demand cases of Q̄ = {240, 180 and 280}, with expected excess capacities of 20%, 40% and 6.66%,
respectively. In those examples, we approximate power systems under normal operations, spare

and tight capacity conditions.

As a robustness check, we have run additional simulations for Q̄ = 100 and Q̄ = 300 (for

various specifications of the other parameters), where von der Fehr and Harbord’s (1993) price

predictions would be unique and equal to 0 and 200, respectively. Simulated prices evolve in the

direction of their prediction and the 95% confidence intervals of observed prices include in both

cases the predicted prices.15

3 Results

3.1 Diversification/prices relationship

Table 1 summarises the relationship between α and stationary market prices, with Q̄ as a

covariate, and fixed effects for δ and γ. The results show a positive relationship between demand

and prices, as expected. The relationship between the diversification parameter, α, and market

prices is negative and strongly significative. Diversification leads to lower market prices. The

inclusion of fixed effects suggests that, overall, the results are robust to the R-E parameter

specifications.16

13For each specification, the one-lag with trend Augmented Dickey-Fuller test-statistic for the price series is

lower than -10. Given that the 95% critical value is -3.43, the null hypothesis of non-stationarity is always rejected.
14 Increasing substantially the length of the simulation, e.g. to 1, 000 periods and using the averages between

801 and 1, 000, did not change the nature of our results.
15Figures are available upon request from the authors.
16Figures with average prices under each R-E specification are available from the authors. Both the positive

demand-to-prices and negative diversification-to-prices effects are clear. The figures are also remarkably similar,
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Table 1: Parameter estimates diversification, demand and prices

Dependent variable: Market Price

Effect Estimate t-value

Intercept 113.70 802.29

α -0.0485 -123.38

Q̄ 0.2343 347.33

R2 49 %

However, the idea that diversification always leads to lower prices is too naive. To see

why, Figures 1-3 present the mean price as a function of portfolio diversification for the three

representative cases, Q̄ = {240, 180 and 280} (with γ = 0.005 and δ = 0.50). In all figures when

α = 0, one firm is exclusively on the base-load and the other on the peak-load. Remember

that portfolio diversification grows with α, as a growing proportion of the base-load generator’s

capacity is replaced with high-cost units, and vice-versa, the generator’s high-cost capacity is

increasingly replaced with base-load. At the other end, when α = 0.50, both firms own one half of

each technology. Besides the mean price, we also represent the set of prices within two standard

deviations from the mean, corresponding approximately to the 95% confidence intervals.

In Figure 1 (Q̄ = 240), prices start from a mean of 169.3 and are reduced very slightly as the

two firms’ portfolios become more balanced. When α = 0.40, the price is 168.1, and increases

thereafter, to 173.7. Portfolio diversification seems to have a small downward price effect before

α = 0.40, but a clear upward effect occurs thereafter. Figures 2 (Q̄ = 180) and 3 (Q̄ = 280)

reinforce the view of demand, or its analogue “excess capacity”, mediating on the influence of

portfolio diversification. In the spare capacity situation, Figure 2, prices are lower than in the

baseline case, with an average specialization price of 157.6. The relationship between prices and

diversification is also different, flat until α = 0.17, where prices start to decrease markedly. The

end of the decrease is at α = 0.23, with average price 145.2, which remains stable for further

diversification cases. Prices are higher in the tight capacity situation (Figure 3) but they seem

to follow a similar pattern to the baseline case. They start at 175.7 and stay flat until around

α = 0.15, where there is an increase to about 179.2. Beyond α = 0.15, prices are flat once again,

albeit at the higher level.

which suggest that the qualitative nature of the results is not affected by the choice of R-E parameters, at least

within our ranges.
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Taken together, Table 1 and Figures 1 to 3 suggest that the shape of the portfolio diver-

sification to market prices relationship is generally decreasing, with two caveats. First, the

relationship is not monotonic and second, there is a significant variation in its shape, depending

on Q̄. Structural breaks occur for α = 0.40 for Q̄ = 240, between α = 0.17 and α = 0.23 for

Q̄ = 180 and α = 0.14 for Q̄ = 280. We hence obtain three preliminary stylised facts regarding

the diversification to prices relationship:

1. Diversification leads to lower prices in general;

2. The market demand influences both absolute price levels and the shape of the diversifi-

cation to prices relationship;

3. The diversification to prices relationship is not monotonic but seems to present structural

stability breaks.

In the remainder of the paper, we further explore those findings. We first show that the

diversification/prices relationship presents non-linearities in all demand cases.

3.2 Structural breaking points and market prices

For each demand and R-E combination, we estimate a simple piecewise linear model between the

level of diversification and the prices, using dummy variables. The model is uniquely specified

by the choice of some threshold value αv,

Pi = β0 + β1Di + β2αi + β3Diαi + ui, (6)

where Di = 0 if αi < αv, and Di = 1 when αi ≥ αv. That is, pre- and post- breaking point

regression estimates are specified, respectively, by

E(Pi|Di = 0, αi) = β0 + β2αi and E(Pi|Di = 1, αi) = (β0 + β1) + (β2 + β3)αi.

The simulated breaking point is then defined as the threshold value that generates the best-fit

regression.

Definition 2 A structural breaking point cαv satisfies F (cαv) ≥ F (αv) for any threshold αv,

where F (αv) denotes the F-statistic obtained from a piecewise linear regression with threshold

αv.

Figure 4 provides the estimated relationship between diversification and prices of the best-fit

regression, for each demand and R-E combination. Each line corresponds to an R-E parameter

combination and each panel corresponds to a different demand specification. If 160 ≤ Q̄ ≤ 220
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(low demand) the negative price effects of diversification are strengthened at the breaking point.

If demand is intermediate, Q̄ = {230, 240, 250}, there are positive price effects at the breaking
points, which continue until full diversification. If demand is large, Q̄ = {260, 270, 280, 290},
there is little excess capacity and prices are already approaching the simulation’s maximum

price. Under those conditions, the breaking point coincides with large price jumps followed by

flat diversification/prices relationships.

These results suggest that:

4. The dynamics pre- and post-breaking point are responsible for the nonlinearities in the

influence of diversification on market prices;

5. In spare capacity cases (i.e. Q̄ = {160, ...220}) prices drop at the breaking point;
6. When capacity is tight (i.e. Q̄ = {230, ...290}), on the other hand, prices increase at the

breaking point.

3.3 Pivotal regime switching point: theory and simulation

In this section, we explore further the non-linearities. We show that the simulated structural

breaks coincide with pivotal regime switching points (e.g. Genc and Reynolds, 2005; Entriken

and Wan, 2005; Perekhodtsev et al., 2002). We also show how those depend on the industry’s

excess capacity.

Definition 3 A high-cost plant is pivotal if the quantity demanded exceeds the sum of production

capacities of all other plants. A level of diversification αt is a switching point if the number of

pivotal plants for α < αt is different than that for α ≥ αt.

For example, when Q̄ = 240 we have that αt = 0.40 because the number of pivotal plants

changes from one to two at this level. If α < 0.40 the peak-load plant of Firm 2 is the only

pivotal since kl1+kl2+kh1 < 240 and k
l
1+kl2+kh2 > 240.On the other hand if α > 0.40 both peak-

load plants are pivotal because kl1+ kl2+ kh1 < 240 and k
l
1+ kl2+ kh2 < 240.Similarly, if Q̄ = 280,

there is a switching point at αt = 0.13, where the number of pivotal plants increases from one

to two. In contrast, if Q̄ = 180, the number of pivotal plants is reduced from one to none at

the switching point, which is αt = 0.20. More generally, the level of excess capacity generates

two regimes and we can use the four plants’ capacity values (kl1, k
l
2, k

h
1 and kh2 ) to identify the

pivotal regime changes under each Q̄ assumption. The closed-form values are presented in the

following proposition.
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Proposition 4 (a) If K/2 < Q̄ ≤ 3K/4, the switching point is αt = (2Q̄−K)/K, at which the

number of pivotal plants is reduced from one to none.

(b) If 3K/4 < Q̄ ≤ K, the switching point is αt = 2(K − Q̄)/K, at which the number of pivotal

plants is increased from one to two.

Table 2 summarises the switching point for each demand level, together with the capacities

of each plant at this level and the number of pivotal plants before and after the threshold.

Table 2: Pivotal regime change thresholds as a function of demand (Q̄).

Capacities at α = αt No pivotal

K Q̄ αt kl1 kl2 kh1 kh2 α < αt α ≥ αt

300 160 0.07 140 10 10 140 1 0

300 170 0.13 130 20 20 130 1 0

300 180 0.20 120 30 30 120 1 0

300 190 0.27 110 40 40 110 1 0

300 200 0.33 100 50 50 100 1 0

300 210 0.40 90 60 60 90 1 0

300 220 0.47 80 70 70 80 1 0

300 230 0.47 80 70 70 80 1 2

300 240 0.40 90 60 60 90 1 2

300 250 0.33 100 50 50 100 1 2

300 260 0.27 110 40 40 110 1 2

300 270 0.20 120 30 30 120 1 2

300 280 0.13 130 20 20 130 1 2

300 290 0.07 140 10 10 140 1 2

That leads to the following stylised facts:

7. For each demand assumption, there is a switching point where the number of pivotal

plants changes;

8. Within our parameter boundaries, there is always one pivotal plant before the switching

point;

9. In relative spare capacity cases (i.e. Q̄ = {160, ...220}) there are no pivotal plants after
the switching point;
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10. When capacity is relatively tight (i.e. Q̄ = {230, ...290}), there are two pivotal plants
after the switching point.

Notice that the theoretical pivotal switching points for Q̄ = 240, Q̄ = 180 and Q̄ = 280 are

visually close to the structural regime change thresholds in the diversification/prices relationships

of Figures 1 to 3. We now need to derive confidence intervals for the estimated values to formally

compare the theoretical and the estimated breaking points. We approximate the distribution

of the structural breaks through a bootstrap procedure. For each demand (fourteen cases) and

R-E (nine) assumptions, we extract 99 random subsamples of 1, 020 observations stratified for α

(we use twenty observations for each α out of the fifty available). We use Definition 2 to obtain

the sub-samples’ structural breaking points.

In Figure 5, we represent the mean (squares) and the 95% confidence intervals of the struc-

tural breaking points. Also in the same figure, we present the theoretical switching points

(diamonds), as described in Table 2. Each panel corresponds to one R-E combination and for

each panel we represent the simulated and theoretical breaking points (vertical axis) for each

level of demand (horizontal axis). Theoretical thresholds and simulation breaking points co-

move following an inverted-V shape: they increase when the change is from one to zero pivotal

players, and decrease when we move from one to two pivotal players. Confidence intervals are

narrow in general.17 Overall, the fit between the close-form and (endogenously obtained) sim-

ulated results is very good. Out of 126 comparisons, only 3 theoretical switching points fall

outside the confidence intervals and 123 fall inside. That leads us to the following stylised fact:

11. There is strong correspondence between simulated breaking points and analytically

derived switching points.

3.4 Diversification and latent intensity of competition

In the simulation environment it is possible to inspect the probability priors from which bids

are chosen. It is therefore possible to study how market structures (excess demand, generation

diversification, etc.) influence the firms’ “competitive attitude” and not only market outcomes.18

17Breaking points are more difficult to identify for Q̄ = 230, Q̄ = 240, and Q̄ = 290. That might, in part, be

due to the location of the corresponding αt in the extremes. For Q̄ = 230 and Q̄ = 240 one has αt = 0.47, which

in the estimation would correspond to a linear model for all observations in α < 0.47 and a second regime for

only α = {.48, .49}. Similarly, for Q̄ = 290 we have αt = 0.07, and there is one regime for α < 0.7 and another

for α ≥ 0.7. The flexibility in the two-regime model is thus less present in those cases.
18We have also analysed latent competition intensities in Rupérez Micola and Bunn (forthcoming) and Rupérez

Micola et al. (forthcoming).

14



Through their trading interaction and the R-E algorithm, firms learn to prioritise those bidding

strategies that achieve higher payoffs and choose them more often. Price regularities follow once

marginal supply patterns are established.

The panels in Figure 6 depict the end-of-simulation individual latent probability distributions

from which firms choose bids. On the horizontal axes, strategies are identified with numbers

ranging from 1 for the more competitive to 100 for the highest possible bid. Cumulative probabil-

ities are calculated on the vertical axes for each element of the action space. The concentration

of probabilities is largely invariant across a large number of periods once the market reaches

convergence, so the distributions on the last trading period are an indication of the plants’ long-

term mixed strategies. Probabilities concentrated on lower and higher actions result on the

plants bidding more and less competitively, respectively, and curve movements to the upper-left

and lower-right corners suggest that the market becomes more and less competitive.

The curves summarise end-of-simulation cumulative bidding probabilities under Q̄ = 180,

and Q̄ = 280 for specialisation (α = 0), diversification (α = 0.5) and at the breaking points

(αt = 0.20 and αt = 0.13, respectively, see Table 2), averaged across the 50 simulation runs for

δ = 0.5 and γ = 0.005.

Figure 6 offers a number of general insights linking individual probability distributions to

market outcomes. Base-load plants trade more competitively than peak-load plants. Under

α = 0, Firm 1 and Firm 2’s bids are very different - lower for the base-load specialist. However,

when α = 0.50, bidding priors for each plant type are very similar but different across plant type.

Thus, there is a clear identification between generation technology and the competitiveness of

the plant’s trading prior.

Moreover, we find evidence suggesting a link between portfolio diversification, learning, trad-

ing behaviour and market outcomes. For a given α, a demand increase from Q̄ = 180 to Q̄ = 280

has the effect of making the bids less competitive (i.e. lower right movements). Moreover, trad-

ing priors shift in the competitive direction (upper left) when diversification grows from α = 0

to αt with resulting lower bids and, hence, market prices. However, when the movement is from

αt to α = 0.5, the curves move to the lower-right corner, which suggests a less competitive

attitude, with resulting higher prices.

3.5 Plant size and diversification

Our portfolio configurations do not vary only in terms of their degree of diversification but also

in the size of the power plants assigned to each firm. It is fair to ask to what extent the two
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effects interact. To answer this question, we run new simulations with marginal costs equal to

zero for all plants. Figures 7a, 7b and 7c provide the market price difference in the representative

cases (Q̄ = {240, 180, 280}) between the main simulations, i.e. under technological diversification
(different marginal costs), and those with different plant sizes but only one technology, i.e. where

marginal costs are zero for all plants. The figures, thus, separate the plant size and technological

aspects.

The difference attributable to technology diversification is positive throughout. Moreover,

the relationship between α and prices presents a visually identifiable kink at the pivotal dy-

namics’ switching point (αt = 0.40, 0.20, 0.13 for Q̄ = 240, 180, 280, respectively). In all cases,

the effect of technology diversification is stronger before the switching point. After a drop

at the switching point, the effect remains stable in the intermediate and tight demand condi-

tions (Q̄ = {240, 280}) but is reduced even further as α increases in the case of spare capacity
(Q̄ = {180}). In short, technology diversification causes an additional change in the price

dynamics, which comes on top of plant size effects.

4 Discussion

We study the relationship between the degree of diversification in electricity generation portfolios

and the firms’ ability and incentives to influence prices. The setting, a version of von der Fehr and

Harbord’s (1993) electricity market, describes some aspects of energy trading well but includes a

very large number of non-Pareto ranked pure strategy equilibria. Thus, computational learning

algorithms offer a number of conceptual and practical advantages for economic analysis. We

choose the R-E inductive equilibrium selection algorithm and, rather than focusing on pure

specialisation and diversification, we also analyse a wide range of intermediate combinations.

Our main research question concerns the shape of the diversification versus market price

relationship. The simulations suggest that this is often decreasing, but that demand levels

influence both its shape and the price levels. The relationship is not monotonic but it includes

structural stability breaks. For a wide range of parameters, we have also identified a strong

correspondence between close-form switching points and those endogenously obtained in the

simulations.

It is well-known that a market where generators are specialised can exhibit more market

power because its price-setting players are more concentrated. However, specialised high cost

generators have less incentive to exert market power because they lack base-load plants. In con-
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trast, diversified firms have the incentives, but may not have enough price-setting capacity. Our

research contributes to clarify the influence of generation technologies with a characterisation of

the role played by pivotal players. The composition of a firm’s generation portfolio is a market

power instrument because it modifies pivotal dynamics and changes the intensity of competi-

tion. A firms’ ability to influence the market price grows with its size and position in the supply

stack. Pivotal players have more market power than non-pivotal. In low-demand cases, there

is a regime-switching point of the diversification level where the market moves from one to no

pivotal plants. At that point, the formerly pivotal plant suffers a sudden loss of market power

and prices drop. In high-demand cases, there is a regime-switching point where the market

setting changes from one to two pivotal players. As a result, the new pivotal plant experiences

a sudden increase in its degree of market power, which is not compensated by a decrease in the

previously unique pivotal plant’s market power. More balanced bargaining power between the

two peak-load plants then facilitates some implicit cooperation and prices increase.

Although the results are stylised and do not scale up directly to any particular real world

situation, they suggest a number of general policy implications. In demand/supply situations

which are usual in Western energy markets (around 20% excess capacity), the relationship be-

tween diversification and prices is V-shaped in duopoly. With some diversification, competition

at the margin leads to lower prices until prices increase at the pivotal threshold. Under perfect

diversification, all generators hold the same technological portfolio and bidding coordination

opportunities are highest. Prices are then higher than in the intermediate cases, but lower than

under specialisation.

Our results might also help explain some features of the electricity time-series, e.g. high

volatility and seasonality. Low- and high-demand periods might not only lead to more or less

supply competition but also change its nature. When demand is low there are no pivotal plants

but in high-demand cases there are two of them. Since electricity demand is extremely price

inelastic and a function of temperature, exogenous weather patterns might explain changes in the

firms’ trading behaviour, which in turn might contribute to cause the dramatic regime switching

observed in econometric studies of electricity prices (for example, Karakatsani and Bunn, 2004).

Our results, however, rely on a number of assumptions. First, they stem from the R-E

algorithm, which is only one of the models one could use. R-E reinforcement learning is shown

to be a fruitful alternative where standard theoretical methods are impractical. Moreover, where

there are unique theoretical predictions (e.g. switching points, von der Fehr and Harbord’s

(1993) predictions for high and low demand/supply ratios), R-E simulations match them well.
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Moreover, our robustness tests suggest that different R-E versions do not qualitatively change

our conclusions. However, it might also be possible to use a different behavioural model, given

that related algorithms also perform well against theoretical predictions (e.g. Day and Bunn,

1999; García et al., 2005). Moreover, R-E simulation agents are naive, and one might expect

that experimental studies will yield outcomes more predictive of real-life electricity markets.

Hence, our quantitative results should be taken as indicators of the direction and relative

importance of the effects, rather than of their magnitude. Second, the various simulation pa-

rameters — including number of firms, technology stocks, etc.— were defined as exogenous and

independent of one another. It is possible that in real markets they would be endogenously de-

termined and simulations might also contribute to study their reciprocal dynamics, as in Bunn

and Oliveira (2007). Here, we have focused on a stylised, relatively standard market model,

whose outcomes are more directly comparable to those of close-form approaches.

References

[1] Arellano, M. S. and Pablo Serra (2005): “Market Power in Price-Regulated Power Indus-

tries”. Working paper CEA No 208.

[2] Baldick, R., Sergey Kolos and Stathis Tompaidis (2006): “Interruptible Electricity Con-

tracts from an Electricity Retailer’s Point of View: Valuation and Optimal Interruption”.

Operations Research, vol. 54 (4).

[3] Borenstein, S., James Bushnell, Edward Kahn and Steven Stoft (1995): “Market Power in

California Electricity Markets”. Utilities Policy vol 5 (3-4), pp. 219—236.

[4] British Energy (2006): Annual Report. Downloaded from: http://www.british-

energy.com/pagetemplate.php?pid=324

[5] Bunn, D.W. and Fernando Oliveira (2007): “Agent-based Analysis of Technological Di-

versification and Specialization in Electricity Markets”. European Journal of Operations

Research.

[6] Bushnell, J. (2003): “A Mixed Complementarity Model of Hydrothermal Electricity Compe-

tition in the Western United States”. Operations Research, vol. 51, No. 1, January—February

2003, pp. 80—93

18



[7] Crawford, G. S., Joseph Crespo and Helen V. Tauchen (2006): “Bidding Asymmetries in

Multi-Unit Auctions: Implications of Bid Function Equilibria in the British Spot Market

for Electricity”. Working paper.

[8] Day, C. and Derek Bunn (1999): “Divestiture of Generation Assets in the Electricity Pool

of England and Wales: A Computational Approach to Analyzing Market Power”. Journal

of Regulatory Economics, Vol. 19, Number 2 / March, 2001, pp. 123-141.

[9] Entriken, R. and Steve Wan (2005): “Agent-Based Simulation of an Automatic Mitigation

Procedure” Proceedings of the 38th Annual Hawaii International Conference on System

Sciences.

[10] Garcia, A., Campos-Nañez, E. and Reitzes, J. (2005): “Dynamic Pricing and Learning in

Electricity Markets”. Operations Research, Vol. 53, No. 2, March—April 2005, pp. 231—241.

[11] Genc, T. and Stanley S. Reynolds (2005): “Supply Function Equilibria with Pivotal Elec-

tricity Suppliers”. Working paper, University of Guelph.

[12] Haruvy, E. and Dale O. Stahl (2004): “Deductive versus inductive equilibrium selection:

experimental results”. Journal of Economic Behaviour and Organization, vol. 53, pp. 319-

331.

[13] Hobbs, B. and J.S.Pang (2007): “Nash-Cournot Equilibria in Electric Power Markets with

Piewise Linear Demand Functions and Joint Constraints”. Operations Research, vol. 55, no.

1, pp. 113-127.

[14] Karakatsani, N. and Derek W. Bunn (2004): “Modelling Stochastic Volatility in High-

frequency Spot Electricity Prices”. Energy Markets GroupWorking Paper, London Business

School.

[15] Nicolaisen, J., Valentin Petrov and Leigh Tesfatsion (2001): “Market Power and Efficiency

in a Computational Electricity Market with Discriminatory Double-Auction”. IEEE Trans-

actions on Evolutionary Computation.

[16] Perekhodtsev, D., Lester B. Lave, Seth Blumsack (2002): “The Model of Pivotal Oligopoly

Applied to Electricity Markets”. Carnegie Mellon Electricity Industry Center, CEIC Work-

ing Paper 02-06

19



[17] PG & E Corporation (2006): Annual Report. Downloaded from:

http://www.pgecorp.com/investors/pdfs/2006AnnualReport.pdf

[18] Roth, A. and Ido Erev (1995): Learning in Extensive-Form Games: Experimental Data

and Simple Dynamic Models in the Intermediate Term. Games and Economic Behavior.

[19] Rupérez Micola, A. and Derek W. Bunn (forthcoming, 2007): “Crossholdings, Information

and Prices in a Capacity Constrained Double Auction”. Journal of Economic Behavior and

Organization.

[20] Rupérez Micola, A. Albert Banal-Estanol and Derek W. Bunn (forthcoming, 2007): “In-

centives and Coordination in Vertically Related Energy Markets”. Journal of Economic

Behavior and Organization, special issue on Agent-based Modelling for Economic Policy.

[21] Stoft, S. (2002): Power System Economics: Designing Markets for Electricity. Wiley. ISBN:

978-0471150404.

[22] van Huyck, J.B., Raymond C. Battalio, Richard O. Beil (1990): “Tacit Coordination Games,

Strategic Uncertainty, and Coordination Failure”, The American Economic Review, Vol. 80,

no. 1, pp. 234-248

[23] von der Fehr, N. and David Harbord (1993): “Spot Market Competition in the UK Elec-

tricity Industry”. Economic Journal.

[24] Veit, D. Anke Weidlich, Jian Yao and Shmuel Oren (2006):“Simulating the Dynamics in

Two-Settlement Electricity Markets via an Agent-Based Approach”. International Journal

of Management Science and Engineering Management, vol. 1, pp. 83-97

20



0 5 10 15 20 25 30 35 40 45 50

135

140

145

150

155

160

165

170

Figure 2: Mean plus and minus two standard deviation of prices (Q=180)

α (diversification)

P
 (
p
ri
c
e
)

0 5 10 15 20 25 30 35 40 45 50

155

160

165

170

175

180

185

190

Figure 1: Mean plus and minus two standard deviation of prices (Q=240)

α (diversification)

P
 (
p
ri
c
e
)

0 5 10 15 20 25 30 35 40 45 50

160

165

170

175

180

185

190

195

Figure 3: Mean plus and minus two standard deviation of prices (Q=280)

α (diversification)

P
 (
p
ri
c
e
)



0
1
0

2
0

3
0

4
0

5
0

1
4
0

1
5
0

1
6
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
1
6
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
4
0

1
5
0

1
6
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
1
7
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

F
ig
u
re
 4

0
1
0

2
0

3
0

4
0

5
0

1
4
0

1
5
0

1
6
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
1
8
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
5
0

1
6
0

1
7
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
1
9
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
5
0

1
6
0

1
7
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
0
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
5
0

1
6
0

1
7
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
1
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
5
0

1
6
0

1
7
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
2
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
6
0

1
7
0

1
8
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
3
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price
0

1
0

2
0

3
0

4
0

5
0

1
6
0

1
7
0

1
8
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
4
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
6
0

1
7
0

1
8
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
5
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
6
0

1
7
0

1
8
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
6
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
6
0

1
7
0

1
8
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
7
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
7
0

1
8
0

1
9
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
8
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

0
1
0

2
0

3
0

4
0

5
0

1
7
0

1
8
0

1
9
0

B
e
s
t 
F
it
 R
e
g
re
s
s
io
n
 f
o
r 
th
e
 L
a
s
t 
S
a
m
p
le
 (
Q
=
2
9
0
)

α
 (
d
iv
e
rs
if
ic
a
ti
o
n
)

Best Fit Price

R
o
th
 E
re
v
 c
o
m
b
in
a
ti
o
n
 1

R
o
th
 E
re
v
 c
o
m
b
in
a
ti
o
n
 2
, 
..
.



1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.2

5
, 
γ 

=
0
.0

0
5
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.5

, 
γ 

=
0
.0

0
5
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

F
ig

u
re

 5

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.7

5
, 
γ 

=
0
.0

0
5
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.2

5
, 
γ 

=
0
.0

1
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.5

, 
γ 

=
0
.0

1
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.7

5
, 
γ 

=
0
.0

1
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.2

5
, 
γ 

=
0
.0

1
5
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.5

, 
γ 

=
0
.0

1
5
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds

1
5

0
2

0
0

2
5

0
3

0
0

0

1
0

2
0

3
0

4
0

5
0

M
e
a
n
 a

n
d
 t
w

o
 S

td
 o

f 
S

im
u
la

te
d
 B

e
s
t-

F
it
 T

h
re

s
h
o
ld

s
 (
δ
 =

0
.7

5
, 
γ 

=
0
.0

1
5
)

Q
 (

d
e
m

a
n
d
)

Theoretical and Best Fit Thresholds



0
2
0

4
0

6
0

8
0

1
0
0

0

0
.2

0
.4

0
.6

0
.81

E
n
d
 o
f 
S
im
u
la
ti
o
n
 C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 o
f 
P
ro
b
a
b
ili
ti
e
s
 S
p
e
c
ia
lis
e
d
 (
Q
=
1
8
0
)

S
tr
a
te
g
y
 N
u
m
b
e
r

Cumulative Probability

0
2
0

4
0

6
0

8
0

1
0
0

0

0
.2

0
.4

0
.6

0
.81

E
n
d
 o
f 
S
im
u
la
ti
o
n
 C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 o
f 
P
ro
b
a
b
ili
ti
e
s
 I
n
te
rm
e
d
ia
te
 (
Q
=
1
8
0
)

S
tr
a
te
g
y
 N
u
m
b
e
r

Cumulative Probability

0
2
0

4
0

6
0

8
0

1
0
0

0

0
.2

0
.4

0
.6

0
.81

E
n
d
 o
f 
S
im
u
la
ti
o
n
 C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 o
f 
P
ro
b
a
b
ili
ti
e
s
 D
iv
e
rs
if
ie
d
 (
Q
=
1
8
0
)

S
tr
a
te
g
y
 N
u
m
b
e
r

Cumulative Probability

0
2
0

4
0

6
0

8
0

1
0
0

0

0
.2

0
.4

0
.6

0
.81

E
n
d
 o
f 
S
im
u
la
ti
o
n
 C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 o
f 
P
ro
b
a
b
ili
ti
e
s
 S
p
e
c
ia
lis
e
d
 (
Q
=
2
8
0
)

S
tr
a
te
g
y
 N
u
m
b
e
r

Cumulative Probability

0
2
0

4
0

6
0

8
0

1
0
0

0

0
.2

0
.4

0
.6

0
.81

E
n
d
 o
f 
S
im
u
la
ti
o
n
 C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 o
f 
P
ro
b
a
b
ili
ti
e
s
 I
n
te
rm
e
d
ia
te
 (
Q
=
2
8
0
)

S
tr
a
te
g
y
 N
u
m
b
e
r

Cumulative Probability

0
2
0

4
0

6
0

8
0

1
0
0

0

0
.2

0
.4

0
.6

0
.81

E
n
d
 o
f 
S
im
u
la
ti
o
n
 C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 o
f 
P
ro
b
a
b
ili
ti
e
s
 D
iv
e
rs
if
ie
d
 (
Q
=
2
8
0
)

S
tr
a
te
g
y
 N
u
m
b
e
r

Cumulative Probability

fi
rm
1
 l
o
w
 c
o
s
t

fi
rm
2
 l
o
w
 c
o
s
t

fi
rm
1
 h
ig
h
 c
o
s
t

fi
rm
2
 h
ig
h
 c
o
s
t

F
ig
u
re
 6



0 5 10 15 20 25 30 35 40 45 50

30

35

40

45

50

55

60

65
Figure 7b: Difference of prices high-cost=100 minus high cost=0(Q=180)
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Figure 7a: Difference of prices high-cost=100 minus high cost=0(Q=240)
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Figure 7c: Difference of prices high-cost=100 minus high cost=0(Q=280)
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