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Abstract

Many multivariate methods that are apparently nistcan be linked by introducing one
or more parameters in their definition. Methodatthan be linked in this way are
correspondence analysis, unweighted or weightedating analysis (the latter also
known as "spectral mapping"), nhonsymmetric corregoce analysis, principal
component analysis (with and without logarithmiansformation of the data) and
multidimensional scaling. In this presentation ill véhow how several of these
methods, which are frequently used in compositiath@a analysis, may be linked
through parametrizations such as power transfoomstilinear transformations and
convex linear combinations. Since the methodsfrést here all lead to visual maps
of data, a "movie" can be made where where théngngarameter is allowed to vary in
small steps: the results are recalculated "framérdayje” and one can see the smooth
change from one method to another. Several okthmevies" will be shown, giving a
deeper insight into the similarities and differenbetween these methods.

Keywords: compositional data; contingency tables; corresppoeenalysis; logratio
transformation; singular value decomposition; sfaehap; weighting.

1 Introduction

In a previous paper at CODAWORK 2005, Greenacreeil(2005a) clarified and demonstrated the
following:

Principal component analysis of compositional datagriginally proposed by Aitchison (1980,
1983) — based on log-ratios — is an unweightediaeref what Lewi (1976) defined as the
“spectral map”. It is the biplot based on this @nghted form that was studied by Aitchison and
Greenacre (2002).

The spectral map weights the rows and columnspfsitive data matrix in the same way as in
correspondence analysis (CA) — for a recent acceemtGreenacre (2007). That is, the weights
are the relative row and column margins (calleasses in CA), which for compositional data
would be: (i) equal weighting for all rows (samplesnd (i) weights equal to the mean
composition for columns (components).

The effect of the weighting can lead to dramatipriovements in the analysis of compositional
data, because the influence of high log-ratiosrofteesent in rare components is reduced. The
weighting also gives the analysigstributional equivalence — the cornerstone property of CA
(Greenacre & Lewi, 2005b, to appear in 2008). His trespect weighted LRA has better
theoretical properties than CA, and also has tivarstdge of being able to diagnose equilibrium
models, but suffers the disadvantage of complioatia the presence of data zeros.

To distinguish between the different PCA/biplot imats of log-ratio analysis (LRA), the terms
unweighted LRA and weighted LRA were introducec tatter being the spectral map. At that time we
looked at CA and LRA, weighted and unweighted, ifferént methodologies sharing the singular-value
decomposition (SVD) as algorithmic engine for digien-reduction. Since then Greenacre (2007, to
appear in 2008) showed that CA and LRA were momsaty linked, thanks to the Box-Cox
transformation (1) (x“-1). The “trick” was to realize what argumentso subject to the Box-Cox
transformation in order to link the methods by avpotransformation. The main results are as falow
where N denotes the original matrix of compositional désee Greenacre (2007) for the technical
details):



Power family 1: Pre-transform the matriX, by the power transformatima(a) = nij”’. In the CA of this

matrix the row and column masses change with In the CA algorithm multiply by (1) the double-
centred matrix on which weighted singular valueaheposition (SVD) is performed.

Power family 2: Pre-transform the matri@ of contingency ratios (i.e., the observed vaqu]edivided by
their “expected values” based on the margins) kypitwer transformatiog(a) = qij”. The original
masses; andg; are maintained constant throughout, both in deublering and in the weighted SVD.
Again the matrix on which the SVD is performed igltiplied by (1/a).

In power family 2, whether we double-centred)lt]ij” or (1/a) (qij”—l) makes no difference at all,
because the constant term will be removed by decddring. Hence, the analysis in this case ansount
to the Box-Cox transformation of the contingencyos

(a0
;(qij 1) (1)

which converges to Ioglg) asa- 0. Thus power family 2 converges to weighted LRAga. 0.

In power family 1, we are also analysing contingeratios of the form (1) qij”, or (1ia) (qij”—l), but
then the ratios as well as the weights and doubigritig are all with respect to row and column raass
that are changing witkr. At the limit asa - 0, these masses tend to constant values, I.dof.the rows
and 1J for the columns; hence the limiting case of pofeenily 1 is the analysis of the logarithms with
constant masses, or unweighted LRA.

The consequence of the above results is that CA.RAJ weighted and unweighted, are part of the same
family, parametrized by the power coefficiemt Whena = 1 the analysis is CA in both cases, but when
a-0 we have unweighted LRA in the first case and ed LRA (spectral map) in the second. The
objective of this paper is to present some illurtinga dynamic graphics that show smooth transitions
between CA and both forms of LRA as well as betweeweighted and weighted LRA, which can be
achieved simply by changing the weights in a smaaly. We will use two well-known examples: the
Roman glass cup data by Baxter, Cool & Heywortho@)9and the MN population genetic data by
Aitchison (1986).

In each of the following sections we document theath transition between two alternative ways of
analyzing the particular data matrix. In the stagrsion, four frames from the video are showe:ftrst
analysis, followed by two intermediate stages drhtthe second analysis. In the video versionghvhi
can be observed by clicking anywhere in the lighelbox which encloses the figure, the whole seqeen
from start to finish is shown in a movie.

2 CA tounweighted LRA

The glass cup data constitute ax@7compositional matrix, with the complication beitigat the
component manganese (Mn) takes on only three greadbentage values 0.01%, 0.02% and 0.03%, due to
rounding of the percentages to two decimals. Emigenders large ratios for this component, which
causes it to dominate the solution in a two-dimemei map of unweighted log-ratios. In CA, apaotnir

the different metric used, the components are wedjlproportional to their marginal averages and the
problem is essentially eliminated. Figure 1 sholath statically and dynamically, the smooth change
from CA to an unweighted LRA, i.e., using power fgmi defined in Section 1. In the static versioa
show four frames, in clockwise order: top lefthe ICA (with power parameter=1), top right whera =
0.67, bottom right whem = 0.33 and bottom left is the unweighted LRA in thmiting case asy- 0.
The dynamic version can be observed by clickingndrgre inside this figure — this gives a much cleare
picture of the change, showing how Mn becomes raok more influential as we proceed towards the
log-ratio transformation where each component isgted equally. In the unweighted LRA we see
diagonal bands of points corresponding to the supsss with the three respective values of Mn —ehes
are stretched out diagonally according to theiugalof another rare element, antimony (Sb), whisb a
contributes highly to the unweighted LRA solution.
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Figure 1: Transition from CA (top left) to unweighted LRA (o left), as the power parameter
changes from 1 to (in the limit) 0. The figuresshi be read clockwise. Clicking on this figurelwil
reveal the video of the whole transition.

Several additional diagnostics are shown in boxegdch of the above figures, and can be viewed
changing dynamically in the video: at bottom Idfie tProcrustes statistic between the original row
configuration and the present one is given as egméage of the total sum-of-squares; at bottont tigg
total inertia is shown in the upper solid curve dhd first two eigenvalues below them. Note that w
show the trajectories on the right as the poweamater drops, with the corresponding Procrustegecur
moving to the right (i.e., the horizontal axis bétright box goes fromr = 1 on the right tar- 0 on the
left, while the one on the left has the horizomteis reversed). In this example we see that tedifnis
increasing steeply with the power transformatidihis large change of scale is taken into accourthby
Procrustes statistic, so the difference in thel fioav configuration is only 6.5% different from thiest
one. In the video you will notice a substantightmon in the configuration around the valae0.20, due

to the two eigenvalues becoming almost equal (this be seen in the righthand box) — at this valee w
have slowed the video down so that this rotationase easily observed.

3 CA toweighted LRA

The next pair of analyses consists of CA and thigllwed form of LRA, i.e., power family 2 defined in
Section 1. Figure 2 and its accompanying videavshihat the transition hardly changes the map s- thi
illustrates the result that when the inertia is lew in this example (total inertia = 0.00237), tagults of
CA and weighted LRA are very similar (see, for epden Greenacre and Lewi, 2005b). In the
application of Section 6 the data have high ineatid there will be a bigger difference betweenttie
analyses.
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Figure 2: Transition from CA (top left) to weighted LRA (bottoleft), i.e., spectral map, as the power
parameterr changes from 1 to (in the limit) 0. The figust®uld be read clockwise and clicking on this
figure will reveal the video of the whole transitio

4 Unweighted to weighted LRA

To complete this study of the trilogy of method#,, @eighted and unweighted LRA, we shos the
transition between unweighted and weighted LRAhe Two methods are linked not by a power
parameter but by the weights assigned to the cadujiemmponents) of the compositional data matnx. |
the unweighted case these weights adeviiereJ = 11 the number of columns, while in the weighted
case the weights amg j=1,...,11, the column averages. Putting these weighdiagonal matrices, (@I
andD, respectively, we define a convex linear combimatbthe weights, as proposed by Greenacre
(2007):

Weighting scheme:D, = B (1/J)1 + (1 -) D, (2)

Thus, by letting the paramet@rthange smoothly from 1 to 0 and using the weigh,j all analyses

between the unweighted cage=1) and the weighted cas8£ 1) will be generated. Because the
weighted LRA is very similar to the CA this gene®t sequence which is almost exactly the reverse
sequence observed in Figure 1, so we do not shberdt, only in the oral presentation. But Table 1
shows numerically the contributions of the 11 congs to the unweighted and weighted solutions in
two dimensions: the contrinbution of Mn is consatay reduced in the weighted solution, which was th
intention, while the contribution of the most commaement silica (Si) has increased.
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unweighted weighted PCA

Table 1: Contributions of components to Si 7.11 21.05 10.42
the two-dimensional solutions in the Al 2.57 2.76 9.66
unweighted and weighted LRAs. In Fe 2.15 4.34 11.20
addition, the corresponding Mg 2.94 3.44 9.49
contributions are given for the two- Ca 0.51 25.93 9.38
dimensional standardized PCA (see Na 2.89 22.33 6.57
Section 4) — these are more evenly K 0.23 2.20 8.17
spread out because variances are Ti 1.92 0.53 9.22
equalized in the PCA standardization. P 0.80 0.37 9.58

Mn 39.48 0.37 7.00

Sh 39.39 16.68 9.33

4 CAtoPCA

The same idea can be used to compare CA with paha@omponent analysis (PCA), where CA
standardizes by the square root of the mean and B Ahe standard deviation. As before, the
standardization is defined parametrically:

Standardization schemeDy, = yD ™+ (1-4) D" (3)

where the column standard deviations are in thgosial ofD_. As y varies from 1 to O, the maps pass
smoothly from CA (chi-square metric) to PCA (stamtized Euclidean). Because the scales induced by
the two metrics are very different, an adjustmentneeded to keep the changing configurations
comparable — we did this by multiplying the secten in (3) by the ratio of the square roots of tibtal
inertias in the CA and the PCA. The CA solutiorséailed as a standard CA biplot (Greenacre, 2007),
which is directly comparable to the scaling of B@A biplot. The results are shown in Figure 3.
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Figure 3: Transition from CA (top left) to standardized PC/fom left). The figures should be read
clockwise; clicking on this figure will reveal thédeo of the whole transition. The CA map is scasd
standard CA biplot, so the rare elements (e.g., &e)pulled towards the centre of the map. Also, the
vertical inertia scale in the box at bottom righttbeen magnified compared to previous figures.
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5 Three-dimensional rotation

While we are demonstrating some videos, we inclade of a rotation of the Baxter data in three
dimensions. Figure 4 again shows four views, isigifrom the view with respect to dimensions 1 @nd
and ending with the view of dimensions 3 and dtimer words rotating around the vertical dimenston
The rotation shows that the component sodium (M&)jch lies in the middle of the map in the initial
two-dimensional projection, opposes all the ott@mnponents along the third dimension (see final ienag
at bottom left).

Figure 4: Rotation of CA solution in three dimensions usigackagea (Nenadé & Greenacre,
2007). The figures should be read clockwise arukiclg on this figure will reveal the video of thdale
transition. The sample points, depicted by unlabdballs, have been scaled up to improve their
visualization.

6 CA and LRA on the population genetic data

To conclude our comparison of CA and LRA, we coesitie MN population genetic data, ax34matrix
which is two-dimensional and which has high ineftaal inertia = 0.449). As shown by Greenacre an
Lewi (2005b) there is a noticeable difference bemvihe CA solution, which shows the populations
along a curve, and the LRA solution, which showvesttiree genetic groups and the populations much
more linear, and thus conforming to a equilibritetationship. Figure 4 shows the transition, anthén
video one can observe dynamically the straighteoirtgpf the configuration. There is very little
difference between the weighted and unweighted $afil.RA in this example because the three column
means are not so different.
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spectral map, as the power parameatecthanges from 1 to (in the limit) 0. The figusd®uld be read
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