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NOTE TO THE READER 
 

This working report contains dynamic graphics which can be viewed directly in the 
PDF file, using Acrobat Reader 6.  Each figure shows four selected images from the 
graphics video sequence – clicking on the figure (inside the light blue frame) will start 
the video.   
 
The quality of the video is not as good as the original and I am investigating how to 
improve it.  But I have also posted the videos on the web-page: 
 

www.econ.upf.edu/~michael/CodaWeb.htm  
 

where they can be alternatively viewed in a higher quality.  Do not be concerned by
the warning messages when you open this web-page. 
 
I believe this is the first time that a UPF working paper contains dynamic graphic 
content – any feedback or advice in this regard will be welcome. 
 
This paper forms my presentation at CODAWORK 2008, the biennial international 
meeting on compositional data analysis held at the University of Girona: 
 

ima.udg.edu/Activitats/CoDaWork08 
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Abstract 
 

Many multivariate methods that are apparently distinct can be linked by introducing one 
or more parameters in their definition.  Methods that can be linked in this way are 
correspondence analysis, unweighted or weighted logratio analysis (the latter also 
known as "spectral mapping"), nonsymmetric correspondence analysis, principal 
component analysis (with and without logarithmic transformation of the data) and 
multidimensional scaling.  In this presentation I will show how several of these 
methods, which are frequently used in compositional data analysis, may be linked 
through parametrizations such as power transformations, linear transformations and 
convex linear combinations.  Since the methods of interest here all lead to visual maps 
of data, a "movie" can be made where where the linking parameter is allowed to vary in 
small steps: the results are recalculated "frame by frame" and one can see the smooth 
change from one method to another.  Several of these "movies" will be shown, giving a 
deeper insight into the similarities and differences between these methods. 
 
Keywords: compositional data; contingency tables; correspondence analysis; logratio 
transformation; singular value decomposition; spectral map; weighting. 

 
 
1   Introduction 

In a previous paper at CODAWORK 2005, Greenacre & Lewi (2005a) clarified and demonstrated the 
following: 

• Principal component analysis of compositional data, as originally proposed by Aitchison (1980, 
1983) – based on log-ratios – is an unweighted version of what Lewi (1976) defined as the 
“spectral map”.  It is the biplot based on this unweighted form that was studied by Aitchison and 
Greenacre (2002).  

• The spectral map weights the rows and columns of a positive data matrix in the same way as in 
correspondence analysis (CA) – for a recent account see Greenacre (2007). That is, the weights 
are the relative row and column margins (called masses in CA), which for compositional data 
would be: (i) equal weighting for all rows (samples) and (ii) weights equal to the mean 
composition for columns (components).   

• The effect of the weighting can lead to dramatic improvements in the analysis of compositional 
data, because the influence of high log-ratios often present in rare components is reduced.  The 
weighting also gives the analysis distributional equivalence – the cornerstone property of CA 
(Greenacre & Lewi, 2005b, to appear in 2008).  In this respect weighted LRA has better 
theoretical properties than CA, and also has the advantage of being able to diagnose equilibrium 
models, but suffers the disadvantage of complications in the presence of data zeros.  

To distinguish between the different PCA/biplot variants of log-ratio analysis (LRA), the terms 
unweighted LRA and weighted LRA were introduced, the latter being the spectral map.  At that time we 
looked at CA and LRA, weighted and unweighted, as different methodologies sharing the singular-value 
decomposition (SVD) as algorithmic engine for dimension-reduction.  Since then Greenacre (2007, to 
appear in 2008) showed that CA and LRA were more closely linked, thanks to the Box-Cox 
transformation (1/α) (xα –1).  The “trick” was to realize what arguments x to subject to the Box-Cox 
transformation in order to link the methods by a power transformation.  The main results are as follows, 
where N denotes the original matrix of compositional data (see Greenacre (2007) for the technical 
details): 
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Power family 1:  Pre-transform the matrix N, by the power transformation nij(α) = nij
α.  In the CA of this 

matrix the row and column masses change with α.   In the CA algorithm multiply by (1/α) the double-
centred matrix on which weighted singular value decomposition (SVD) is performed. 

Power family 2:  Pre-transform the matrix Q of contingency ratios (i.e., the observed values nij divided by 

their “expected values” based on the margins) by the power transformation qij(α) = qij
α .  The original 

masses ri and cj are maintained constant throughout, both in double-centring and in the weighted SVD.  

Again the matrix on which the SVD is performed is multiplied by (1/α). 

In power family 2, whether we double-centre (1/α) qij
α  or (1/α) (qij

α –1) makes no difference at all, 
because the constant term will be removed by double-centring.  Hence, the analysis in this case amounts 
to the Box-Cox transformation of the contingency ratios: 

( )1
1 −α

α ijq            (1) 

which converges to log(qij) as α→0.  Thus power family 2 converges to weighted LRA as α→0. 

In power family 1, we are also analysing contingency ratios of the form (1/α) qij
α , or (1/α) (qij

α –1), but 
then the ratios as well as the weights and double-centring are all with respect to row and column masses 
that are changing with α.  At the limit as α→0, these masses tend to constant values, i.e. 1/I  for the rows 
and 1/J  for the columns; hence the limiting case of power family 1 is the analysis of the logarithms with 
constant masses, or unweighted LRA. 

The consequence of the above results is that CA and LRA, weighted and unweighted, are part of the same 
family, parametrized by the power coefficient α .  When α = 1 the analysis is CA in both cases, but when 
α→0 we have unweighted LRA in the first case and weighted LRA (spectral map) in the second.  The 
objective of this paper is to present some illuminating dynamic graphics that show smooth transitions 
between CA and both forms of LRA as well as between unweighted and weighted LRA, which can be 
achieved simply by changing the weights in a smooth way.  We will use two well-known examples: the 
Roman glass cup data by Baxter, Cool & Heyworth (1990) and the MN population genetic data by 
Aitchison (1986). 

In each of the following sections we document the smooth transition between two alternative ways of 
analyzing the particular data matrix.  In the static version, four frames from the video are shown: the first 
analysis, followed by two intermediate stages and then the second analysis.  In the video version, which 
can be observed by clicking anywhere in the light blue box which encloses the figure, the whole sequence 
from start to finish is shown in a movie.  
 

2   CA to unweighted LRA 
 
The glass cup data constitute a 47×9 compositional matrix, with the complication being that the 
component manganese (Mn) takes on only three small percentage values 0.01%, 0.02% and 0.03%, due to 
rounding of the percentages to two decimals.  This engenders large ratios for this component, which 
causes it to dominate the solution in a two-dimensional map of unweighted log-ratios.  In CA, apart from 
the different metric used, the components are weighted proportional to their marginal averages and the 
problem is essentially eliminated.  Figure 1 shows, both statically and dynamically, the smooth change 
from CA to an unweighted LRA, i.e., using power family 1 defined in Section 1.  In the static version we 
show four frames, in clockwise order: top left is the CA (with power parameter α = 1), top right when α = 

0.67, bottom right when α = 0.33 and bottom left is the unweighted LRA in the limiting case as α→0.  
The dynamic version can be observed by clicking anywhere inside this figure – this gives a much clearer 
picture of the change, showing how Mn becomes more and more influential as we proceed towards the 
log-ratio transformation where each component is weighted equally.  In the unweighted LRA we see 
diagonal bands of points corresponding to the subsamples with the three respective values of Mn – these 
are stretched out diagonally according to their values of another rare element, antimony (Sb), which also 
contributes highly to the unweighted LRA solution. 
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Figure 1: Transition from CA (top left) to unweighted LRA (bottom left), as the power parameter α  
changes from 1 to (in the limit) 0.  The figures should be read clockwise.  Clicking on this figure will 

reveal the video of the whole transition. 
 
Several additional diagnostics are shown in boxes in each of the above figures, and can be viewed 
changing dynamically in the video: at bottom left the Procrustes statistic between the original row 
configuration and the present one is given as a percentage of the total sum-of-squares; at bottom right the 
total inertia is shown in the upper solid curve and the first two eigenvalues below them.  Note that we 
show the trajectories on the right as the power parameter drops, with the corresponding Procrustes curve 
moving to the right (i.e., the horizontal axis of the right box goes from α = 1 on the right to α→0 on the 
left, while the one on the left has the horizontal axis reversed).  In this example we see that the inertia is 
increasing steeply with the power transformation.  This large change of scale is taken into account by the 
Procrustes statistic, so the difference in the final row configuration is only 6.5% different from the first 
one.  In the video you will notice a substantial rotation in the configuration around the value α = 0.20, due 
to the two eigenvalues becoming almost equal (this can be seen in the righthand box) – at this value we 
have slowed the video down so that this rotation is more easily observed. 
 

3   CA to weighted LRA 
 
The next pair of analyses consists of CA and the weighted form of LRA, i.e., power family 2 defined in 
Section 1.  Figure 2 and its accompanying video shows that the transition hardly changes the map – this 
illustrates the result that when the inertia is low, as in this example (total inertia = 0.00237), the results of 
CA and weighted LRA are very similar (see, for example, Greenacre and Lewi, 2005b).  In the 
application of Section 6 the data have high inertia and there will be a bigger difference between the two 
analyses. 
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Figure 2: Transition from CA (top left) to weighted LRA (bottom left), i.e., spectral map, as the power 

parameter α  changes from 1 to (in the limit) 0.  The figures should be read clockwise and clicking on this 
figure will reveal the video of the whole transition. 

 

4   Unweighted to weighted LRA 
 
To complete this study of the trilogy of methods, CA, weighted and unweighted LRA, we shos the 
transition between unweighted and weighted LRA.   The two methods are linked not by a power 
parameter but by the weights assigned to the columns (components) of the compositional data matrix.  In 
the unweighted case these weights are 1/J, where J = 11 the number of columns, while in the weighted 
case the weights are cj, j=1,…,11, the column averages.  Putting these weights in diagonal matrices, (1/J)I 
and Dc respectively, we define a convex linear combination of the weights, as proposed by Greenacre 
(2007): 

Weighting scheme:   Dw = β (1/ J) I + (1 – β ) Dc          (2) 

Thus, by letting the parameter β change smoothly from 1 to 0 and using the weights in Dw, all analyses 

between the unweighted case (β = 1) and the weighted case (β = 1) will be generated.  Because the 
weighted LRA is very similar to the CA this generates a sequence which is almost exactly the reverse 
sequence observed in Figure 1, so we do not show it here, only in the oral presentation.  But Table 1 
shows numerically the contributions of the 11 components to the unweighted and weighted solutions in 
two dimensions: the contrinbution of Mn is considerably reduced in the weighted solution, which was the 
intention, while the contribution of the most common element silica (Si) has increased. 
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4   CA to PCA 
 
The same idea can be used to compare CA with principal component analysis (PCA), where CA 
standardizes by the square root of the mean and PCA by the standard deviation.  As before, the 
standardization is defined parametrically: 

Standardization scheme:   Dm = γ Dc
–½ + (1–γ ) Ds

–1            (3) 

where the column standard deviations are in the diagonal of Ds. As γ  varies from 1 to 0, the maps pass 
smoothly from CA (chi-square metric) to PCA (standardized Euclidean).  Because the scales induced by 
the two metrics are very different, an adjustment is needed to keep the changing configurations 
comparable – we did this by multiplying the second term in (3) by the ratio of the square roots of the total 
inertias in the CA and the PCA.  The CA solution is scaled as a standard CA biplot (Greenacre, 2007), 
which is directly comparable to the scaling of the PCA biplot.  The results are shown in Figure 3. 

 

 
Figure 3: Transition from CA (top left) to standardized PCA (bottom left). The figures should be read 

clockwise; clicking on this figure will reveal the video of the whole transition. The CA map is scaled as a 
standard CA biplot, so the rare elements (e.g., Mn) are pulled towards the centre of the map. Also, the 

vertical inertia scale in the box at bottom right has been magnified compared to previous figures. 

Table 1: Contributions of components to 
the two-dimensional solutions in the 
unweighted and weighted LRAs.  In 
addition, the corresponding 
contributions are given for the  two-
dimensional standardized PCA (see 
Section 4) – these are more evenly 
spread out because variances are 
equalized in the PCA standardization. 

 unweighted     weighted
Si 7.11 21.05
Al 2.57 2.76
Fe 2.15 4.34

Mg 2.94 3.44
Ca 0.51 25.93
Na 2.89 22.33

K 0.23 2.20
Ti 1.92 0.53
P 0.80 0.37

Mn 39.48 0.37
Sb 39.39 16.68
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5   Three-dimensional rotation 
 
While we are demonstrating some videos, we include one of a rotation of the Baxter data in three 
dimensions.  Figure 4 again shows four views, starting from the view with respect to dimensions 1 and 2 
and ending with the view of dimensions 3 and 2, in other words rotating around the vertical dimension 2. 
The rotation shows that the component sodium (Na), which lies in the middle of the map in the initial 
two-dimensional projection, opposes all the other components along the third dimension (see final image 
at bottom left). 

    
 

    
 

Figure 4: Rotation of CA solution in three dimensions using R package ca (Nenadić & Greenacre, 
2007). The figures should be read clockwise and clicking on this figure will reveal the video of the whole 

transition.  The sample points, depicted by unlabelled balls, have been scaled up to improve their 
visualization. 

 

6   CA and LRA on the population genetic data 
 
To conclude our comparison of CA and LRA, we consider the MN population genetic data, a 24×3 matrix 
which is two-dimensional and which has high inertia (total inertia = 0.449).  As shown by Greenacre and 
Lewi (2005b) there is a noticeable difference between the CA solution, which shows the populations 
along a curve, and the LRA solution, which shows the three genetic groups and the populations much 
more linear, and thus conforming to a equilibrium relationship.  Figure 4 shows the transition, and in the 
video one can observe dynamically the straightening out of the configuration.  There is very little 
difference between the weighted and unweighted forms of LRA in this example because the three column 
means are not so different. 
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Figure 5: MN genetic data, showing transition from CA (top left) to weighted LRA (bottom left), i.e., 
spectral map, as the power parameter α  changes from 1 to (in the limit) 0.  The figures should be read 

clockwise and clicking on this figure will reveal the video of the whole transition. 
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