
1 

Biplots of fuzzy coded data 

 
Zerrin Aşan1 and Michael Greenacre2  
 

1Department of Statistics, Anadolu University, Eskişehir, Turkey  

 Email: zasan@anadolu.edu.tr 

2Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain 

 Email: michael@upf.es 
 
 
Abstract 

A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to 

visualize the results of many multivariate techniques, especially those that are based on the 

singular value decomposition.  We consider data sets consisting of continuous-scale 

measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of 

multiple correspondence analysis.   Of special interest is the way quality of fit of the biplot is 

measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis 

seriously under-estimates this measure.  We show how the results of fuzzy multiple 

correspondence analysis can be defuzzified to obtain estimated values of the original data, and 

prove that this implies an orthogonal decomposition of variance.  This permits a measure of fit 

to be calculated in the familiar form of a percentage of explained variance, which is directly 

comparable to the corresponding fit measure used in principal component analysis of the 

original data.  The approach is motivated initially by its application to a simulated data set, 

showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is 

applied to a real set of meteorological data.  

 

Key words: defuzzification, fuzzy coding, indicator matrix, measure of fit, multivariate data, 

multiple correspondence analysis, principal component analysis. 
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1.  Introduction 

The term “biplot” was introduced by Gabriel [7] in the context of principal component analysis 

(PCA) as the representation of the rows and columns of a data table as points in a joint plot in 

which scalar products between row and column points optimally approximate the corresponding 

data elements.  The idea of the biplot, a generalization of a two-variable scatterplot to many 

variables, has found its way into many other multivariate techniques having results that can be 

visualized in this way: for example, linear regression, generalized linear models, 

multidimensional scaling, log-ratio analysis, various types of correspondence analysis and 

discriminant analysis – see [11] and, for a recent account, [15].  Several papers showing this 

style of graphical representation have appeared in applications of fuzzy data analysis: some 

examples are [4, 21, 18]. 

By fuzzy coded data we will mean data on several variables on continuous measurement scales 

that have been recoded into categories in a fuzzy way, as opposed to crisp coded data where the 

coding is made into sets of dummy variables with only ones and zeros.  The object of this paper 

on the biplots of such fuzzy coded data is twofold.  First, we want to compare the original biplot 

of Gabriel with the biplot of fuzzy coded data – the former displays linear relationships only 

between variables, whereas the latter can display more general inter-variable relationships, 

leading to a richer interpretation.  To analyze the fuzzy coded data we will use correspondence 

analysis (CA) since it is well adapted to nonnegative data on categorical scales [14].  The 

application of CA to multivariate categorical data is called multiple correspondence analysis 

(MCA – see [16] for a comprehensive overview), and since our application is a generalization of 

MCA to fuzzy coded data, one could call our analytical approach “fuzzy MCA”. Second, we 

focus on the measure of quality of the biplot display in the case of fuzzy MCA.  We argue that it 

is not the quality of display of the fuzzy coded data that should be measured, but rather that of 

the original data.  Defuzzification of the biplot display allows us to reconstruct estimates of the 

original data, which leads to quality measures directly comparable to PCA’s linear approach. 

After a summary of the methodology (Section 2) we shall illustrate the benefit of the fuzzy 

approach using some simulated data, for which the structure is known (Section 3).  We shall 

then prove some new theoretical results about defuzzification of the fuzzy MCA solution to 

establish correct measures of fit (Section 4) and discuss the scaling properties of fuzzy MCA 

(Section 5).  Finally, we shall apply the methodology to a real data set from meteorology 

(Section 6) and conclude with a discussion. 
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2.  Fuzzy coding and multiple correspondence analysis 

CA [1, 2]  is a method which graphically displays the rows and columns of a matrix of 

nonnegative data as points in a biplot-type spatial representation – for technical and practical 

details see [14], for example.  It is a variation on PCA that is suited to ratio-scale data such as 

counts and proportions, in fact, to any nonnegative tabular data as long as all the data are 

measured in the same units, including zero/one observations such as presence-absence data. 

Multiple correspondence analysis (MCA) is the CA of multivariate categorical data, coded as 

sets of dummy variables in a crisp zero/one form.  For example, suppose that an observed data 

set consists of four categorical variables, each with three categories, then Table 1 shows an 

example of some of the original multivariate data and their recoding in the form of three dummy 

variables for each categorical variable.  MCA can be defined as the application of CA to the 

matrix of dummy variables. 

To analyze continuous data on heterogeneous scales in the MCA framework, these data can be 

recoded into categories: for example, if three categories are used, these would represent “low”, 

“medium” and “high” values of the variables.  This discrete assignment of a continuous value to 

a category obviously loses a substantial part of the original information, which can be alleviated 

by using fuzzy coding.  Table 2 shows an example, where instead of three crisp dummy 

variables coded as 0 or 1 exclusively, there are three fuzzy variables coded with values between 

0 and 1 while still adding up to 1 for each variable.   Fuzzy coding in the context of 

correspondence analysis (CA) appeared in French literature in the 1970s – van Rijckevorsel [28] 

attributes the idea originally to the doctoral thesis of Bordet [3], while the first published papers, 

to our knowledge, were by Guitonneau and Roux [17] and Gallego [8].  The CA of fuzzy 

categorical variables, i.e., fuzzy MCA, has not been directly compared to regular dimension-

reduction approaches for visualizing continuous variables such as PCA, neither has the issue of 

measure-of-fit been addressed: these are the motivations for this article. 

The basic idea of the data coding is simple.  Given a typical cases-by-variables N×P matrix of 

continuous data, where variables can be measured on different scales, assign the values of each 

variable in a fuzzy way into J categories, where the number J is typically 3, 4 or 5 depending on 

the number of cases in the data and how much detail is required in the results.  This is called 

fuzzification of the data – see [21, 22], for example.  We have chosen the system of so-called 

“three-point triangular membership functions”, also called piecewise linear functions, or second 

order B-splines – see [28] for a theoretical account of this topic.  In Figure 1 it is shown how the 
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original values are mapped, via the triangular membership functions, to a five-category recoding 

(J = 5), using the minimum, quartiles and maximum as so-called “hinge points”, with the first 

and last functions not being “shouldered”.  It is important for our future arguments that the 

fuzzification be linear and also be invertible, hence our choice of this simple form of 

membership function.   Alternatives to triangular membership functions can be trapezoidal, 

Gaussian and generalized bell (or Cauchy) membership functions, which have various other 

theoretical advantages – see [19, 26], for example. These coding aspects and the choice of 

membership functions have been dealt with extensively in the literature [30, 29, 25].  

In our fuzzification scheme each continuous value generates at most two positive nonzero fuzzy 

values in adjacent categories that add up to 1 – there can be a single positive value of 1 for data 

that fall exactly on the hinge points.  The exact choice of hinge points is not so critical, thanks to 

the principle of distributional equivalence in CA (see, for example, [14]: pages 37–38).   Using 

triangular membership functions as in Figure 1, the mathematical definition of the fuzzy values 

z1, z2,…,z5, for a five-category fuzzy coding is as follows, where x is the original value on the 

continuous scale and the hinge points are m1,m2,…,m5: 
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(1) 

The crisp form of such a recoding scheme, that is where each data value is coded strictly into a 

set of J zero/one dummy variables, leads to what is called an indicator matrix, which is the 

matrix analyzed by regular MCA.   The fuzzy coded data can then be referred to as a fuzzy 

indicator matrix 

The algorithm for performing fuzzy MCA, that is the CA of a fuzzy indicator matrix, follows 

that of regular MCA (see, for example, [16: Chapter 2]): 
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1. Fuzzy code each of the P variables into J fuzzy variables, leading to PJ fuzzy categories; 

for example, for J = 5, use the transformations in (1).  The recoded data matrix, denoted 

by Z, is thus NPJ, and has grand total NP, since each of the N rows has P sets of fuzzy 

values that each add up to 1. 

2. Compute the matrix P as Z divided by its grand total: P = Z / (NP), with row and column 

sums of P defined by r and c: r = P1, cT = 1TP, where 1 denotes a (column) vector of 1s 

of appropriate order, and T denotes vector and matrix transpose.  Note in this special case 

that the elements of r are constants equal to 1/N.  The elements of r and c are called row 

and column masses in CA, and serve as weights in the analysis.  Dr (NN) and Dc 

(PJPJ) denote diagonal matrices of the respective masses. 

3. Compute the matrix of standardized residuals, S:  

S = =  2/12/1 )(   cr DrcPD T 2/12/1 ))/1((  cNN D1cP T

4. Compute the singular-value decomposition (SVD) of S:  

TVUDS     

 where the singular vectors in U and V are normalized as UTU = VTV = I, and D  is the 

diagonal matrix of the singular values, which are positive and in descending order:       

1   2  … > 0. 

5. Compute the biplot coordinates of the row and column points: 

rows:     columns:  UDDF 2/1 r VDΓ 2/1 c

and use the first two columns, for example, of F and  to make a two-dimensional biplot.  

In the terminology of CA (see glossary of terminology in Appendix D of [14]), F 

contains the principal coordinates of the rows and  the standard coordinates of the 

columns.  The joint plot of F and  constitutes a well-defined biplot (see Chapter 8 of 

[15]). 
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Fuzzy MCA shares many properties of regular MCA: 

 Each category point receives a weight proportional to its marginal total across all the 

cases: thus the extreme categories (1 and 5 in the “unshouldered” five-category scheme) 

receive less weight because the values in the corresponding columns sum to less than the 

others, which is clear from Figure 1.   

 Each set of J categories will be centred at the origin of the eventual biplot, where 

centring is in the weighted average sense, using the weights assigned to the categories. 

 Each row point will be at the weighted average position of the category points according 

to its set of fuzzy values used as weights. 

 The solutions for the coordinates are optimal scales (see Section 5); that is, the variance 

of the case points is maximized along principal axes of the solution, subject to a 

quadratic identification constraint on the column categories.  Compared to an 

unstandardized PCA of the fuzzy matrix, the main difference that distinguishes the fuzzy 

MCA approach is that its quadratic constraint involves the weights assigned to the 

category points. 

An important aspect that has not been treated in the literature is how to measure the quality of 

the fit, or alternatively the error, in biplots of such fuzzy coded data.  This will be dealt with in a 

separate section (Section 4). 

 

3.  Application to simulated data 

In order to demonstrate the difference between the PCA biplot and the fuzzy MCA biplot using 

data with a known structure, we constructed a data set of N = 200 cases and P = 6 variables A, B, 

C, D, E and F as follows: 

– First 200 values of two uncorrelated random normal variables were generated, X1 and X2, with 

mean 0 and variance 1, as well as of four uncorrelated uniform random variables, U1, U2, U3, U4, 

on the interval [0,1].  

– A = 20 + 3*X1 + 5*X2 + 2*(U1 – ½) 

– B = 20 + 5*X1 –  X2 + 2*(U2 – ½) 
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– C = U3 

– D = log(A) 

– E = U4 

– F = (A – 20)2  

Thus A and B have been generated as linear combinations of the same two normal variables, 

onto which uniform noise has been added.  Their theoretical correlation can be calculated as 

0.336.  D is the logarithm of A and F is a quadratic function of A.  C and E are random variables 

that have theoretically zero correlations with all of the variables.  The correlation between A and 

its log-transformed value D is expected to be very high, while that between A and its 

quadratically transformed value F, which has a minimum at the mean value of A, is expected to 

be low.  The sample correlation matrix is given in Table 3. 

Figure 2 shows the PCA biplot of these data, where the 200 cases are indicated by dots and the 

six variables by vectors.  The data are standardized, as is customary in PCA, because of the 

widely differing scales of the variables.  In such a biplot the projections of the row points onto 

the directions defined by the variable vectors gives an approximation, up to a scaling factor, of 

the original standardized data.  Vectors that point in the same direction are thus positively 

correlated (e.g., A and D) while those pointing in opposite directions are negatively correlated 

(e.g., C and E).  The impression given by the biplot agrees only partially with the way the data 

were constructed.  The high correlation between A and D is apparent, as well as the lower, but 

nevertheless positive, correlation between B and A and between B and D.  But the two random 

“noise” variables C and E define a second dimension where they appear to be negatively 

correlated and the quadratic variable F appears to be correlated with them. 

On the other hand, consider the fuzzy MCA in Figure 3, which shows one point for each of the 

fuzzy categories (computations are performed using the ca package in R [23, 24]).  In Figure 4, 

the five categories of each variable have been connected to show their trajectories in Figure 3 

more clearly.  The categories of A and D follow almost identical paths through the display, 

showing a curved pattern called the arch effect, which is typical in CA owing to its simplex 

geometry (see, for example, [14]: chap. 2).  The category values of these two variables are 

almost identical because D is a monotone function of A.  In CA terminology we would use 

“association”, rather than “correlation”, to describe the relationship between A and D, because 

the nature of the association can take many different forms, not only the linear form inherent in 
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the PCA approach.  Thus the association between A and D is very strong, and it is positive 

because the association of the categories, from category 1 to category 5, is almost identical. The 

categories of B also follow the same curved path, but not as closely as A and D, with the same 

low to high (1 to 5) trajectory, hence we would conclude that B is positively associated with A 

and with D, but not as strongly as that between A and D.  The quadratic variable F takes on a 

completely different pattern, with low values associated with the middle categories of A, B and 

D, and high values when these variables are either low or high – this is exactly the nature of the 

quadratic relationship of the constructed variable.  Finally, the two “noise” variables C and E 

make small erratic trajectories near the origin of the display, agreeing with the fact that they 

have no association with any of the variables.  

This example shows clearly the difference between the two approaches, and how the fuzzy 

coded version can come to a conclusion which is practically identical to the way the data were 

constructed, whereas the PCA, which can only visualize linear relationships, leads to several 

incorrect conclusions.  

 

4.  Defuzzification and the measure of fit 

So far we did not comment on the goodness-of-fit of the two displays to the data.  In the case of 

PCA it is customary to give percentages of variance explained by each dimension, and their sum 

for the two-dimensional solution.  For Figure 2 it is 37.1% and 17.6% respectively, totalling 

54.8% explained.  The value of 54.8% has the same interpretation as in regression analysis – of 

the variance of the six variables analyzed, 54.8% of their variance has been explained by the two 

dimensions, or principal axes, of the PCA, and 45.3% is unexplained residual or “error” 

variance.  It is clear from Figure 2 that too much prominence is being given to the two “noise” 

variables C and E – we shall return to this point later in this section.  

In CA the idea is the same, namely to measure how much variance in the data, called “inertia” in 

CA, is explained by the solution.  But the fuzzy MCA gives very low percentages of explained 

variance: 16.4% and 14.5%, totalling 30.9%.  It is well-known that regular MCA gives very 

pessimistic estimates of explained variance.  For example, Lebart [20] states that in MCA the 

“percentages of variance are misleading measures of information”, and the same is true for 

fuzzy MCA.   It might be thought that this is because fuzzy MCA embeds the data in a much 

higher-dimensional space (24 dimensional – the space of 30 fuzzy dummy variables that have 6 
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linear restrictions, each set of five summing to 1) compared to PCA (only 6-dimensional), so the 

chances of good reconstruction of the data in a two-dimensional solution are better for PCA.  

But this is only one reason, and a more important reason is that the rationale for the measure of 

fit is wrong.  We are not interested in reconstructing the fuzzy coded data, which is what the 

30.9% measures, but rather in reconstructing the original data.  Fortunately, this can be done 

through a process of defuzzification of the solution. 

Thanks to the form of the triangular membership functions, the fuzzy coded data can be 

transformed back to the original data by taking a linear combination of the hinge points, using 

the fuzzy values z1,z2,…,z5 as coefficients.  Since these coefficients are nonnegative and add up 

to 1, this inverse transformation, called defuzzification, can be thought of as weighted 

averaging: 

 x = z1m1 + z2 m2 + z3 m3+ z4m4 + z5m5          (2) 

Now defuzzification can also be applied to the five numbers which are estimated 

from the fuzzy MCA solution, which have the same property that they add up to 1, leading to 

estimates   of the original data.  These defuzzified estimates have 

favourable properties, proved in the Appendix, which we summarize here. 

521 ˆ,,ˆ,ˆ zzz 

552211 ˆˆˆˆ mzmzmzx 

The matrix  containing the estimates  can be written as X̂ x̂ MZX ˆˆ  , where is the larger 

matrix of the estimates , and M is a full-rank matrix (see Appendix) – hence the rank of is 

equal to that of , which would be equal to 2 for a 2-dimensional solution.   It is these estimates 

 that will be compared with the original data values x in order to measure goodness of fit (or 

lack thereof).   

Ẑ

ẑ X̂

Ẑ

x̂

A further property of the defuzzification is that the means of the estimates  are the 

same as the means of the original z1, z2,…, z5 – thus the defuzzified means recover the means of 

the original variables (see Appendix, result 1).   For example, the set of five means for the fuzzy 

variables corresponding to the first variable A is  [0.0723   0.2878   0.2725   0.2938   0.0737] and 

A´s hinge points are [4.68   15.64   20.37   24.80   34.06]; thus the computation 0.0723×4.68 + 

0.2878×15.64 + ··· + 0.0737×34.06 = 20.18, the mean of A. 

521 ˆ,,ˆ,ˆ zzz 

Using defuzzified estimates of the data is a feasible way to obtain a measure of fit because it can 

be proven that the reconstructed data and the residuals x̂ xx ˆ  lie in orthogonal subspaces (see 
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Appendix, result 2), just as in PCA, showing that the dimensions are nested.  Hence the 

decomposition of total variance into explained plus residual variance as well as the summation 

of percentages over single dimensions are valid (see Appendix, result 3).   One of our objectives 

is to compare the fuzzy MCA approach with PCA, so this property of the defuzzified solution is 

crucial because it allows quantification of the success of each dimension of the fuzzy MCA, in 

parallel with the classical PCA approach. 

After defuzzifying the estimations from the two-dimensional fuzzy MCA of Figure 3, the 

percentage of variance explained turns out to be 42.4%.  This is more than the 30.9% explained 

variance of the fuzzy data, but still less than the 54.8% explained variance for the PCA.  

However, this is not surprising, since the fuzzy MCA is trying to account for nonlinearities in 

the data whereas the PCA only explains the linear part.  It is interesting to see this measure of fit 

broken down in terms of how much variance of the individual variables is being explained in the 

two approaches: 

                                    A                   B                   C                   D                  E                  F                  overall 

 PCA    90.4%   39.1%   56.6%   92.8%   14.4%   34.8%     54.8%  

 Fuzzy MCA   87.8%   28.3%    0.5%   80.6%    4.0%   53.5%     42.4% 

It is clear that the fuzzy approach does much better in ignoring the “noise” variables, and that 

the better fit in the PCA is almost principally due to improved reconstruction of the random part 

of the data.  If the explained variances are averaged over four variables, omitting those for C and 

E, the percentages are 64.3% and 63.8% respectively – there is no longer a big difference, and 

coupled with the fact that the fuzzy MCA gave an interpretation in line with the way the data 

were simulated, it is clearly a superior approach.  

Because of the orthogonality of the dimensions of the defuzzified solution, percentages of 

variance can be computed for individual axes and summed – these individual percentages, given 

in Figure 3, turn out to be 7.3% and 32.6% for the first and second axes respectively.  The 

second axis, which shows the close ordinal relationship between variables A, B and D, explains 

more variance in the original variables than the first, which accounts for the nonlinear 

relationship of variable F with variable A, and thus in turn with variables B and D.   As far as the 

within-variable associations are concerned, at the fuzzy category level, the first axis is slightly 

more important than the second (16.4% compared to 14.5%) since it accounts for the category-

level relationships within four variables (A, B, D and F). 
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5. Optimal scaling properties 

Both PCA and fuzzy MCA optimize the variance explained on successive dimensions in their 

own way, but as shown above PCA optimizes the explanation of linear relationships while fuzzy 

MCA optimizes that of linear and nonlinear relationships.  The positions of the cases on each 

dimension, called scores, are made of components due to each of the original variables, and 

each of these components can be correlated with the overall scores to quantify how well the 

dimension is agreeing with the component variables.  We illustrate this idea, reminiscent of item 

analysis, in the case of the first dimension of each approach. 

In the case of PCA, the score is a linear combination of the original variables (normalized), with 

the coefficients being those of the first eigenvector of the analysis.  Each component is then just 

a constant times the variable, so the component–score correlations are just those between the 

columns of the original data matrix and the score vector.  In the case of fuzzy MCA, the set of J 

categories have scale values on the first dimension and the component of the score is the 

corresponding linear combination of the scale values.  For example, the five scale values on the 

first dimension for variable A of the simulation are [ 1.594  0.415  –2.006  0.619  1.765 ] (i.e., 

the coordinates on the first dimension of category points A1,A2,…,A5 in Figure 3 and first graph 

in Figure 4), and the first case has fuzzy data [ 0  0  0  0.771  0.229 ] on A; hence A’s component 

value to the score of case 1 is 0.771×0.619 + 0.229×1.765 = 0.881.  Once the components of all 

six variables are computed in the same way, the score (i.e., the position of case 1 on the first axis 

of Figure 3), is the average of these six values.   

Table 4 shows the correlations between the six components of dimension 1 and the score on that 

dimension for PCA and fuzzy MCA.  Here it is clear that fuzzy MCA is doing better overall 

than PCA, especially with respect to the nonlinearly related variable F.  Overall performance is 

measured by the average squared correlation as well as Cronbach’s  reliability coefficient.  

Since the performance of the fuzzy MCA appears to be slightly enhanced by the slightly higher 

correlations with the “noise” variables, we repeated the whole exercise without these variables, 

also shown in Table 4, and fuzzy MCA still performs better than the PCA. 
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6.  Application to real data 

Table 5 contains average values of five meteorological variables for 40 cities of Turkey, based 

on measurements taken in 2004 [27] – note that we use this example as an illustration of our 

approach to real data rather than a substantive meteorological application.    

Figure 5 shows the PCA biplot of Table 5, where the data have been standardized, explaining 

75.6% of the variance, and Figure 6 shows the fuzzy MCA of the same data set.  Because there 

are only 40 cases, we reduced the number of fuzzy categories to three, with hinges at the 

minimum, median and maximum of each variable.  The explained variance after defuzzification 

is 69.4%, not far behind that of PCA seeing that the data are embedded by the fuzzy coding into 

twice as many dimensions (10 in the case of the fuzzy MCA, 5 in the case of PCA).  As in the 

simulated data the coding scheme allows the “low”, “middle” and “high”  categories of the five 

variables, labelled 1, 2 and 3, to associate with one another according to the inter-variable 

associations, as opposed to being constrained to be linear as in PCA.  In Figure 5, for example, 

humidity and sunshine look strongly negatively correlated, while precipitation appears to 

correlate weakly positive with humidity and weakly negative with sunshine.  Figure 6 tells a 

more interesting story: low sunshine, high humidity and high rainfall actually associate strongly, 

with Rize being the archetypal example and then Samsun, Trabzon, Zonguldak and Göztepe, 

etc.  But at the other end low rainfall, low humidity and high sunshine fan out in different 

directions, high sunshine and low humidity negative on the vertical dimension for Diyarbakır, 

Siirt and Gaziantep, for example, and low precipitation positive on the first dimension for cities 

like Konya, Kırşehir, Erzincan, Afyon and Van, which are otherwise “middle” on sunshine and 

humidity. 

 

7.  Discussion and conclusions 

Both PCA and fuzzy MCA operate on the same data in different forms, but it is the fuzzy coding 

that takes the data into a higher-dimensional space in which higher-order associations can be 

explored, whereas PCA is only capable of explaining linear relationships.  Even though there are 

more parameters in the fuzzy MCA for a fixed dimensionality of the solution, it appears to 

perform slightly worse than PCA in reconstructing the original data, but this is again because it 

has more to explain. 
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Another way to compare the PCA and fuzzy MCA on a more equal footing is to use only two 

membership functions that code just the linear information, also known as doubling in CA [12, 

22].  The two endpoints m1 (minimum) and m2 (maximum) are used as hinges, and the 

membership functions for the “positive” and “negative” doubled variables are simply: 

 z+(x) = (x– m1)/(m2 – m1)       z–(x)  = (m2–x)/(m2 – m1) = 1 – z+(x)  (3) 

These two values sum to one and code how close the data are to the respective endpoints; 

defuzzification is achieved as before by weighted averaging: x = z–(x) m1 + z+(x) m2.  In the 

meteorological example the fuzzy coded data are now 5-dimensional, as for PCA, and after 

defuzzification of the 2-dimensional solution, the measure of fit is 75.0%, just fractionally lower 

than the optimal PCA fit – this illustrates that the two methodologies essentially coincide in 

their quest for linear associations.  This slight difference in explained variance is due to the fact 

that the fuzzy MCA standardizes the data differently from PCA as a result of the chi-square 

metric – Greenacre [12], pp.175–179, calls this standardizing by “polarization” rather than by 

the variance.    

Our examples have consisted of continuous variables only, but in the French literature the 

justification for fuzzy coding has mostly been to permit continuous variables to be analysed 

jointly with categorical ones – see, for example, [9, 17].  The situation of mixed discrete-

continuous data presents the particular problem for defining measures of fit which take into 

account in an equitable way the different characteristics of logical and fuzzy coding.  Various 

approaches are possible.  For example, Gower [10] defines a distance function which attempts to 

equalize the contributions of the different variables to the total variance.  Escofier and Pagès [6] 

define a doubling transformation of continuous data, different from (3) above, which is more 

suitable for analysing continuous data jointly with dichotomous categorical data.  They consider 

groups of homogeneous variables, for example the group of continuous variables (in original 

form or fuzzified) and the group of categorical variables, they then standardize them internally 

using the first eigenvalue as a surrogate for the table variance, and then proceed to joint analysis.  

Most of these approaches can be reduced to a type of reweighting of the variables to equalize in 

some sense their contributions to the joint analysis. 

The main and novel contribution of this paper is to show how the solution of the fuzzy analysis 

using CA, which is essentially a nonlinear treatment of the data, can be defuzzified to give 

results that can be directly compared to those of the linear approach in PCA.  The results proved 
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in the Appendix underpin the use of the defuzzified solution to measure the fit of the result to 

the original data, since this solution gives an orthogonal decomposition of variance, just as in 

PCA.   These new results about the defuzzification and consequent convenient measure of fit are 

a consequence of the particular triangular membership functions used, which are linear and 

invertible.  One can use other membership functions for the fuzzification of the data, of course, 

but for nonlinear membership functions the favourable defuzzification properties will not hold.  

We can also not allow “shoulders” in the triangular membership functions, where the end 

categories are a constant value of 1 below and above chosen extreme values, because this would 

make the coding non-invertible. 

An important aspect of the recoding of the data into fuzzy categories, demonstrated clearly by 

the simulated data set but also in the real one, is that the method of fuzzy MCA can visualize 

nonlinear relationships between variables – this property holds for all forms of membership 

function.  Since one of our objectives has been to compare the biplots of fuzzy coded data with 

the standard PCA biplot, this flexibility in the type of relationship that can be diagnosed in the 

data is a distinct advantage over linear PCA. 
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APPENDIX 

Some theoretical results about CA of fuzzy coded data 
 

Consider the NP data matrix X and corresponding fuzzy coded matrix Z, using the triangular 

membership functions (1). In the CA of Z the row masses are all equal to 1/N and the column 

masses cj in vector c are the column averages divided by P; Dc is the diagonal matrix of the 

column masses.   

From the definition of the triangular membership functions (1) we can write the relationship 

between X and Z as the following linear defuzzification formula: 

 X = ZM             (4) 

where: 

where mj is a vector of the hinge parameters of the 

membership function for the j-th variable (in our 

example these are the minimum, three quartiles and 

maximum ) 

 M =    
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m

m
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The defuzzified approximate values, obtained from the reconstructed values in , are similarly 

obtained as . 

Ẑ

MZX ˆˆ 

The CA of Z, defined in Section 2, implies the same type of decomposition as for the crisp 

equivalent Z (see [13: chapter 2]), which can be written as: 

 ccNP DDVUD11Z )( 2/1 TT
     where UTU = VTV = I    (5) 

To estimate the data from a K-dimensional approximation, we use the first K columns of U and 

of V, denoted by U[K] and V[K] respectively, and the first K singular values in diagonal matrix 

D[K]: 

ccKKKNP DDVDU11Z )(ˆ 2/1
][][][

 TT
       (6) 

The following results can then be proved.
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1. The means x  of X are the same as those of X̂ and are equal to the defuzzified averages of 

the columns of Z (or of Ẑ )  

Proof:   ZM1X1x TTT

NN

11
  

  Hence the means x  are the defuzzified column means of Z. 

 Since Z and Z have the same column means (this is a standard property of CA 

approximations), the above proof can be reversed to show that the defuzzified 

means of , i.e., 

ˆ

Ẑ TTT xX1MZ1  also is ,ˆ1ˆ1

NN
 , that is the means of X and are 

the same. 

X̂

2. The deviations between the data and the data estimated by defuzzifying the reconstructed 

data from fuzzy MCA are orthogonal to these estimates. 

Proof: The result holds first for the fuzzy coded matrix and its estimated values from 

CA.  Suppose that the subindex  [–K] indicates the remaining singular components 

from the (K+1)-th onwards, so that for example U = [ U[K] U[–K]  ].  Then from (5) 

and (6)  

                        0DDVDU11UDVDZZZ  )(ˆ)ˆ( 2/1
][][][][][][

2/12  
 ccKKKKKK NNP TTTT

  

because (the rows have equal masses, so their coordinates have 

arithmetic mean zero) and (orthogonality of the singular vectors).  

The linear operation of defuzzifying does not change this property: 

01U 
T

][ K

0UU  ][][  KK
T

0MZZZMX)XX  ˆ)ˆ(ˆˆ(  TTT  

 

3. As a result of 2. the sum-of-squares of X decomposes into two components: 

]ˆˆ[trace]ˆ(ˆ[(trace][trace TTT XX)XX)XXXX   

and this property is maintained for any common centring and standardization of X – in our 

application centring is with respect to the common means and standardization with respect to 

the standard deviations of the original variables.  
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The above results generalize to any fuzzy coding for which the defuzzification transformation is 

linear, as in (4). 
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Figure 1: Triangular membership functions to code a continuous variable 
(horizontal axis) into five fuzzy categorical variables. 
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Figure 2: PCA biplot of the simulated data.  The two “noise” variables C and E play 
prominent roles on the second dimension and variable F, which is a quadratic 
function of A, appears to be correlated with the second dimension.  
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Figure 3: Fuzzy MCA biplot of the simulated data. Each variable is represented by 
five points: for example, A1, A2, A3, A4 and A5 are categories 1 to 5 of variable A.  
The percentages of variance in parentheses are those obtained for the fuzzy coded 
data on each dimension, totalling 30.9%.  The other percentages (32.8% and 9.6%, 
totalling 42.4%) are for the defuzzified solution – described in Section 4 – where the 
second axis turns out to explain more variance than the first.  
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Figure 4: The trajectories of the six variables in Figure 3, linking the categories 1 to 
5 of each variable separately for comparison. 
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Figure 5: PCA biplot of Table 5, where variables have been standardized.  75.6% of 
the variance is explained by the first two dimensions. 
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Figure 6: Fuzzy MCA biplot of Table 5, where each variable has been fuzzy coded 
into  three categories.  After defuzzification 69.4% of the variance of the original 
standardized data is explained in two dimensions, whereas 55% of the fuzzy coded 
data is explained (percentages in parentheses),  
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  A   B   C   D         A1 A2 A3   B1 B2 B3   C1 C2 C3   D1 D2 D3 
 _______________        __________________________________________ 

  3   2   1   2          0  0  1    0  1  0    1  0  0    0  1  0 

  1   2   1   3          1  0  0    0  1  0    1  0  0    0  0  1 

  3   1   2   2          0  0  1    1  0  0    0  1  0    0  1  0 

  .   .   .   .          .  .  .    .  .  .    .  .  .    .  .  . 
  .   .   .   .          .  .  .    .  .  .    .  .  .    .  .  . 
  .   .   .   .          .  .  .    .  .  .    .  .  .    .  .  . 

 

  

Table 1: On the left, in each row, some observations on four categorical variables, A 
to D, with three categories each, and on the right, their coding into three dummy 
variables for each variable (crisp coding).  
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  A    B    C    D       A1   A2   A3    B1   B2   B3    C1   C2   C3    D1   D2   D3 
 __________________     ______________________________________________________________ 

 3.1 21.5  5.6  9.6     0.83 0.17 0.00  0.00 0.12 0.88  0.21 0.79 0.00  0.39 0.61 0.00 

 3.7 15.0  5.8  8.5     0.00 0.78 0.22  0.33 0.67 0.00  0.16 0.84 0.00  0.77 0.23 0.00 

 2.6 16.1  6.3 13.2     0.94 0.06 0.00  0.04 0.96 0.00  0.00 0.79 0.21  0.00 0.15 0.85 

   .    .    .    .       .    .    .     .  .    .  .  .    .  .  . 
   .    .    .    .       .    .    .     .  .  .    .  .  .    .  .  . 
   .    .    .    .       .    .    .     .  .  .    .  .  .    .  .  . 

 

  

Table 2: On the left, in each row, some observations on four continuous variables, A 
to D, and on the right, their fuzzy coding into three categories. 
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                                 A                  B                 C                   D                   E                   F 

          A    1.0000  0.3623 -0.0179  0.9742  0.0194 -0.0636 

          B    0.3623  1.0000 -0.0251  0.3500  0.0413 -0.0077 

          C   -0.0179 -0.0251  1.0000 -0.0200 -0.0378 -0.0031 

          D    0.9742  0.3500 -0.0200  1.0000  0.0204 -0.2738 

          E    0.0194  0.0413 -0.0378  0.0204  1.0000 -0.0593 

          F   -0.0636 -0.0077 -0.0031 -0.2738 -0.0593  1.0000 

 

 

Table 3: (Linear) sample correlations between the six variables used in the 
simulation study.  
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      PCA          fuzzy MCA 
 

all six variables 

A   0.949  0.992 

B   0.557  0.346 

C   0.044  0.123 

D   0.971  0.991 

E   0.064  0.167 

F   0.265  0.988 

average 
squared  0.371  0.517  
correlation 

 
Cronbach’s   0.662  0.814 

 

without “noise” variables 

A   0.950  0.992 

B   0.556  0.343 

D   0.972  0.992 

F   0.263  0.990 

average 
squared  0.557  0.766  
correlation 

 
Cronbach’s   0.734  0.898 

 

 
 

Table 4: Correlations between variable components and the overall score on the first 
dimension, for the simulation study, shown first for all six variables and then for the 
four variables without the “noise” variables C and E.  The average squared 
correlation and Cronbach’s  reliability coefficient is shown in each case. 
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        SUN HUM PRE ALT MAX
aAdan 7.55 66 647.1 27 45.6

Af yon 7.09 64 434.4 1034 39.8
Anamur 8.33 69 993.5 5 44.2
Ankara 7.19 60 377.7 891 40.8
Antak

 
ya 7.15 70 1124.1 100 43.9

Antalya 8.28 64 1052.3 54 45.0
A

 
ydın 7.42 63 857.7 57 44.6

Balıkesir 6.56 70 5885.0 147 43.7
Bolu 5.49 73 536.4 742 39.4
Bursa 6.35 69 696.3 100 43.8

 

 anakkale 7.31 73 615.4 6Ç 38.8
Diyarbakır 8.00 54 491.4 677 46.2
Edime 6.24 70 585.9 51 42.2
Erzincan 6.57 60 366.8 121

 
8 40.6

Erzurum 7.05 64 447.0 175 8 35.6
Eskişehir 6.46 68 373.9 801 40.6
Gaziante 8.00 60 548.8 855p 44.0
Göztepe 6.23 75 677.2 33 40.5
Is parta 7.29 61 581.0 997 38.0
İslâhiye 7.46 60 842.0 518 45.4
İzmir 8.06 62 691.1 29 43.0
Karaköse 6.24 68 533.3 1631 39.9
Kars 6.27 70 501.2 177

 

5 35.4
Kastamonu 6.12 70 461.6 800 42.2
Ka

 

 

 

 

 

 

 

 

 

 
Table 5: Averages of five meteorological variables observed in 40 cities of Turkey 
during 2004: SUN – daily hours of sunshine; HUM – humidity (%); PRE – annual 
precipitation (mm); ALT – altitude (m); MAX – maximum temperature (C).  

 

yseri 7.11 65 374.6 1093 40.7
Kır ehir 7.17 63 377.8 1007ş 40.2
Konya 7.29 60 325.9 1031 40.6
Kütahya 6.02 67 564.7 969 38.8
Malatya 7.40 54 387.5 948 42.2
Merzifon 6.35 67 392.4 755 42.6
Muğla 7.48 62 1196.3 646 41.6
Rize 4.14 77 2300.4 9 38.2
Samsun 4.46 75 650.3 4 38.4
Siirt 7.43 51 726.5 896 46.0
Sivas 6.43 64 417.0 1285 40.0
Tekirdağ 5.40 76 575.4 549 46.8
Trabzon 4.36 72 833.8 3 38.4

anlıurfa 8.28 49 463.1 30 38.2Ş
5an 7.43 59 380.4 1661 37.V

Zonguldak 5.54 72 1220.2 137 40.5


