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Abstract 

 

This paper analyzes empirically the volatility of consumption-based stochastic discount 

factors as a measure of implicit economic fears by studying its relationship with future 

economic and stock market cycles. Time-varying economic fears seem to be well 

captured by the volatility of stochastic discount factors. In particular, the volatility of 

recursive utility-based stochastic discount factor with contemporaneous consumption 

growth explains between 9 and 34 percent of future changes in industrial production at 

short and long horizons respectively. They also explain ex-ante uncertainty and risk 

aversion. However, future stock market cycles are better explained by a similar 

stochastic discount factor with long-run consumption growth.  
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1. Introduction 

It is well known that risk-neutral probabilities are objective (or physical) 

probabilities adjusted upward (downward) if they are associated with states with high 

(low) marginal utility of consumption. Hence, objective probabilities are just risk-

neutral probabilities multiplied by some risk aversion adjustment which depends on the 

actual preferences of the representative investor. The interaction of these two sets of 

probabilities with the volatility of stochastic discount factors, as a way of measuring 

time-varying aggregate economic fears, is the focus of this work.  

In their seminal paper, Breeden and Litzenberger (1978) show that the risk-

neutral density can be recovered from option prices as long as the market is dynamically 

complete. On the other hand, the existence of risk aversion means that risk-neutral 

densities will probably differ from the actual density from which realizations of returns 

are drawn. Several procedures have been proposed to obtain comparable risk-adjusted 

densities. Jackwerth (2000) recognizes a changing risk-neutral probability density 

function while imposing a stationary objective density function. This is problematic and 

leads to the well known pricing kernel puzzle. To avoid this debatable assumption, Bliss 

and Panigirtzoglou (2004) assume risk-aversion function stationarity and estimate 

implied preference parameters from power and exponential utility functions. Finally, 

Alonso, Blanco and Rubio (2006) extends this work using habit preferences and 

Benzoni, Dufresne and Goldstein (2005) argue that the pricing kernel puzzle and the 

volatility smirk can be rationalized if the agent has recursive preferences and if the 

aggregate dividend and consumption processes are driven by a persistent stochastic 

growth variable that can jump.1   

Contrary to this literature, this paper explores empirically the theoretical results 

underlying objective and risk-neutral probabilities without relying on option data, 

except for motivating the procedures employed along the presentation and some 

additional robustness analysis. In a recent theoretical paper, Bakshi, Chen and 

Hjalmarsson (2004) (BCH hereafter) define a distance between the risk-neutral and the 

objective probability measures, which can be related to the volatility of the defining 

stochastic discount factor (SDF). By arguing that the BCH distance captures economic 
                                                 
1 Note that both papers propose state dependent utility functions. A complete theoretical discussion of 
why state dependence in fundamentals and preferences are necessary to explain risk aversion puzzles are 
discussed by Chabi-Yo, Garcia and Renault (2005). 
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fears, and given the association between their distance and the volatility of the defining 

SDF, our paper analyzes empirically the volatility of consumption-based SDFs to 

measure investors´ implicit recession fears.   

In particular, we employ several sensible consumption-based SDF candidates 

and discuss whether their volatilities are able to predict future economic cycles. Thus, 

we analyze the empirical link between the ex-ante economic fears about 

macroeconomic fundamentals and the ex-post economic cycle in the financial market 

and the economy. The empirical exercise is performed using data from Spain, one of the 

largest industrial economies in Europe. Moreover, a robustness analysis of the results 

using data from the better-known U.S. market is also performed. 

The paper shows that recursive preferences and long-run aggregate consumption 

risk are important when measuring time-varying economic fears. More precisely, the 

volatility of the SDF based on recursive preferences and contemporaneous consumption 

growth tends to be especially high just before macroeconomic recessions, while the 

volatility of SDFs based simultaneously on long-run consumption growth and recursive 

preferences seems to be particularly high before persistent decreases in the stock 

market. The volatility of a habit-based SDF is also significant when predicting both 

macroeconomic recessions and stock market falls at short-horizons. Interestingly, the 

recursive utility-based SDFs are also able to explain significantly uncertainty and risk 

aversion in the stock market. It should be noted that we do not pursue to compare SDFs 

from the traditional asset pricing point of view. We just want to study whether the 

volatility of reasonable SDFs is able to predict future economic cycles. Of course, the 

forecasting performance of the alternative specifications employed in the paper may be 

different. This is how the comparison of the proposed consumption-based SDFs should 

be understood. 

This paper is organized as follows. Section 2 discusses the theoretical 

framework that relates risk-neutral and objective probability distributions with the 

volatility of SDFs. Section 3 presents the stochastic discount factor specifications 

analyzed in the paper, while Section 4 contains a description of data and some initial 

empirical results using the Hansen-Jagannathan (1991) volatility bound. Section 5 

selects the appropriate consumption-based stochastic discount factors, and Section 6 

discusses how well these specifications capture macroeconomic and stock market 
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recessions. Section 7 discusses additional results using U.S. data, and Section 8 

concludes with a summary of our findings. 

 

2. A Distance Metric between the Risk-Neutral and Objective Probability 

Distributions and the Volatility of the Stochastic Discount Factor 

There are well known economic episodes, like the stock market crash in 1987, 

the Asian currency crisis during the summer of 1997, the Russian default in the summer 

of 1998, the Gulf wars, or the terrorist attack on September 11th, 2001, in which the 

left-tail of the risk-neutral density becomes considerably fatter than the corresponding 

left-tail of the risk-adjusted counterpart.  

 

Figure 1 compares estimated probability density functions for two different 

expiration days for the European-style Spanish equity option contract on the IBEX-35 

futures for Spanish at a four-week horizon. Panel A shows density functions estimated 

with option prices of 24/8/2001; i.e., before the terror attacks of September 11th. On 

that day, all densities have a similar shape. Naturally, risk-adjusted densities appear 

(slightly) shifted to the right.2 Similarly, Panel B shows probability density functions 

estimated with option prices of 21/9/2001, which reflect the impact on market prices of 

the events of September 11th. Compared with panel A, the probability mass of the tails, 

and especially on the left tail, is much higher reflecting the higher uncertainty. As 

expected by the definition of risk-neutral probabilities, risk-adjusted densities display 

lower left-skewness than those of the risk-neutral density, pointing out that the latter 

distribution overstates poor states of nature, especially during stress economic periods. 

Marginal utility is higher in those scenarios and this is precisely what is introduced into 

the estimated risk-neutral densities. Figure 2 contains the difference between the 

monthly probabilistic mass assigned to the 10 percent left tail of the risk-neutral and the 

power risk-adjusted density functions from October 1996 to December 2004.3 It is quite 

                                                 
2 Using data from October 1996 to December 2004, preference parameters for power and exponential 
utility functions are implicitly estimated by searching for the optimal level of risk aversion that maximize 
the predicting ability of the resulting risk-adjusted densities. See Alonso, Blanco and Rubio (2006) for 
details. 
3 The power utility employs a risk aversion coefficient of 1.67, which is the implied estimate obtained by 
Alonso, Blanco and Rubio (2006) for the same time period. 
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striking to observe how these differences are time-varying with a clear increasing 

pattern for every potentially damaging economic episode.  

 

Given this evidence, we may also argue that, in absolute values, these crash fears 

may cause a positive overall gap or distance between the risk-neutral and objective 

probability measures. For a given percentage of the tails of the density functions, the 

potential economic downturn increases more the probabilistic mass assigned to the left 

tail of the risk-neutral density over the risk-adjusted density than the probabilistic mass 

assigned to the right tail of the risk-adjusted density over and above the risk-neutral 

counterpart. This suggest that the overall distance taken in absolute value between the 

risk-neutral and objective probability measures may be well suited to proxy for 

economic fears of investors. Interestingly, the theoretical results provided by BCH 

(2004) formalize an overall distance measure between the two probability sets. 

Moreover, they also show that their overall distance between both measures is 

associated with the volatility of any empirically sound SDF.  

 

In order to describe their metric,4 consider an economy endowed with a 

probability space ( ), ,Ω Ρℑ  whereΩ  denotes the state space and ℑ  is the tribe of 

subsets of Ω  that are events and can therefore be assigned a probability. We 

denoteΡ and Q as the objective and risk-neutral probability measures respectively. 

These two measures are probabilistically equivalent since they share exactly the same 

null events, yet assign different (positive) probability masses to the same event.  

 

Under no arbitrage opportunities, there exists a strictly positive SDF, M, such 

that the price of any financial asset between any two time periods t and t+1 is given by 

( )jt t t 1 t 1p E X MΡ
+ +=                              (1) 

where jtp  is the price of asset j at time t, t 1X +  is the future payoff of asset j, and tEΡ  

is the conditional expectation with respect to the objective probability measure Ρ . 

Alternatively, the price of the financial asset with respect to the risk-neutral probability 

Q is 

                                                 
4 Our presentation is slightly different and much shorter than the discussion in the original paper by BCH 
(2004). 
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                                                   ( )Q
jt t 1t

f

1p E X
R +=                                                   (2) 

where Q
tE is the conditional expectation with respect to Q and fR is the gross riskless-

rate of interest between t and t+1. 

The well known Radon-Nikodym derivative is a strictly positive random 

variable dQ
dΡ

 with dQE 1
d

Ρ
Ρ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

. Then, the risk-neutral probability measure Q 

equivalent to Ρ  can be defined in terms of the Radon-Nikodym derivative through the 

definition of expectation with respect to Q given by ( )Q dQE X E X
d

Ρ
Ρ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 for any 

random variable X. We choose a particular equivalent probability measure Q such that 

f t 1
dQ R M
dΡ += .5 Given that ( )t t 1 fE M 1 RΡ

+ = , it must be true that,                                         

                                        
( )

t 1

t 1

M
dQ d

E MΡ
Ρ+

+
=                                                  (3)  

BCH (2004) define the distance between Ρ  and Q as 

                                          ( ) ( ) ( )0D ,Q  dQ X d X  
Ω

Ρ Ρ≡ −∫                                     (4) 

This distance will be zero if and only if Ρ  and Q assigns the same probability 

mass to every given event belonging toℑ in the state spaceΩ . Substituting the 

expression (3) into (4) we obtain, 

                    ( )
( )

t 1
0 t f t t+1

ft t 1

M 1D ,Q E  1 R E  M  
RE M

Ρ Ρ
Ρ

Ρ +

+
= − = −                       (5) 

Then, the absolute distance between both probability measures is completely 

determined by the expectation under the objective probability of the absolute difference 

                                                 
5 One can check that, under no arbitrage, this random variable is strictly positive and of expectation 1. 
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between M and f1 R .6 It is now convenient to scale ( )0D ,QΡ  by fR , and 

denote ( ) ( )1 0 fD ,Q D ,Q RΡ Ρ≡ , so that ( )  
R
1M EQ,D
f

1tt1 −= +
ΡΡ . 

By recalling that ( )2XE X ≡ , we finally apply Hölder´s inequality to the 

distance probability measures to obtain,7 

                     ( ) ( ) ( )M MEM  
R
1M Q,D0 1tt1t
f

1t1 σΡ Ρ =−=−≤≤ +++                 (6) 

where ( )Mσ  is the standard deviation of the stochastic discount factor M. Hence, the 

volatility of the stochastic discount factor provides an upper bound for the distance 

between the risk-neutral and objective probability distribution, up to a constant of 

proportionality. This implies that a higher volatility of the defining SDF is not 

necessarily accompanied by a larger distance between the probability measures and, 

therefore, by increasing economic fears from investors. The concrete relationship 

between the volatility of any sensible SDF and the distance between probabilities 

becomes an empirical issue. In any case, we expect that, at the beginning of stressed 

economic periods, the volatility of reasonable SDFs should increase to reflect the 

overall larger absolute gap between the risk-neutral and objective probability measures.  

This is, therefore, the main hypothesis to be investigated by our empirical analysis 

below. In fact, by employing the Hansen and Jagannathan (1991) volatility bound, and 

assuming a mean-reverting process for the volatility of the SDF, Brennan, Wang and 

Xia (2004) show a strong counter-cyclical behavior of the volatility of the SDF under 

the ICAPM framework of Merton (1973). Note that we are interested in studying 

                                                 
6 This is the case since fR  is just a scaling factor. 

7 For the probability space ( ), ,Ω Ρℑ , ( )2L , ,Ω Ρℑ  denotes the space of the random variable with finite 

second moment, 2E  X  ⎡ ⎤ < ∞⎢ ⎥⎣ ⎦
. For any two random variables X and Y belonging to ( )2L , ,Ω Ρℑ , 

Hölder´s inequality establishes that, 
1 2 1 22 2E  XY  E  X  E  Y   ⎡ ⎤ ⎡ ⎤≤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.  
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whether the volatility of sensible SDFs predicts future economic cycles, rather than 

analyzing contemporaneous pricing relationships as in Brennan, Wang and Xia (2004). 

 

3. Consumption-based Stochastic Discount Factors 

Despite the fact that nondurable consumption growth betas have repeatedly 

failed to explain the cross-sectional variation of average returns, the recent U.S. and 

Spanish evidence has shown that the covariance of returns with consumption growth 

over the quarter of the return and many following quarters explains a considerable 

variation of expected returns.8 The main reason is that consumption is slow to adjust to 

returns. This is a very important result of the modern asset pricing literature because it 

maintains consumption as a primary determinant of the utility function of the 

representative agent. 

At the same time, in a completely different setting, it has also recently been 

shown that small and value firms are more pro-cyclical than large and growth firms 

with respect to the growth rate of durable consumption.9 This suggests that durable 

versus nondurable consumption growth rates is a pro-cyclical state variable that 

accentuates the counter-cyclical behavior of marginal utility. Moreover, the inclusion of 

durable consumption can be done under recursive utility where the return of market 

equity wealth is part of the stochastic discount factor. Once again, this allows a higher 

volatility of the stochastic discount factor relative to specifications where only 

consumption growth is employed.10 

Finally, habit persistence has shown to be a key preference representation in 

asset pricing modeling.11 The reason is the extra volatility in marginal utility of 

consumption obtained throughout the behavior of the so called surplus consumption 

ratio which is the percentage difference between consumption and the level of habits.  

We now briefly discuss the alternative SDFs employed in this paper. The well 

known SDF under power utility is given by 
                                                 
8 See Parker and Julliard (2005) and Márquez and Nieto (2007) for the US and Spanish markets 
respectively. 
9 See Yogo (2006). 
10 See Campbell (1996). 
11 See Campbell and Cochrane (1999), Li (2001) and Chen and Ludvigson (2004). 
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( )
( )

t 1 t 1
t 1

t t

U C C
M

U C C

γ
β β

−
+ +

+
′ ⎛ ⎞

= = ⎜ ⎟′ ⎝ ⎠
                                 (7) 

where tC  is aggregate per-capita non-durable consumption as calculated in time t, 

( )tU C′  is marginal utility, β  is the subjective discount factor or impatience parameter, 

and γ  is the coefficient of relative risk aversion. The set of parameters to be estimated 

is given by { },θ β γ= . 

Parker and Julliard (2005) keep marginal utility of consumption as the key 

aggregate risk factor. They argue that consumption growth rates and stock returns do 

not covary contemporaneously as preferences in (7) indicate because agents’ 

consumption takes time to respond to changes in wealth. The cost of adjusting 

consumption to current circumstances is greater than the cost of adjusting investment in 

financial assets. Furthermore, marginal utility of consumption is related to other slow-

adjusting factors such as changes in labor earnings or property investments. Hence, they 

suggest measuring asset risk as the covariance between returns and consumption growth 

rate not only in the period to which returns refer, but also in several periods forward. 

They refer to this as ultimate consumption risk. They propose the following SDF 

                                       
( )

( )
ft 1,t 1 S t 1 SS S 1

t 1
t

R U C
M

U C
β + + + + ++

+
′

=
′

                                 (8) 

Under the power specification, the SDF takes the form 

                                      S S 1 t 1 S
t 1 ft 1,t 1 S

t

C
M R

C

γ
β

−
+ + +

+ + + +
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                 (9) 

where t 1 S tC C+ +  is the consumption growth rate between t and t+1+S, and 

ft 1,t 1 SR + + +  is the risk-free rate corresponding to the same horizon. In the empirical 

specification below, we follow the finding of Márquez and Nieto (2007) who verify 

that, in the Spanish case, a three-year frame (S is 11 quarters) is the most appropriate 
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time lag for conciliating the consumption growth rate with current returns on equity 

assets. 12 

Contrary to the previous specifications, the SDF under recursive utility has the 

advantage of separating relative risk aversion and the elasticity of intertemporal 

substitution. Moreover, this SDF not only incorporates consumption growth but also the 

return on the market portfolio. In particular, under recursive utility, the 

contemporaneous SDF is given by, 

                                         
1

1t 1
t 1 mt 1

t

C
M R

C

κη
κβ

−
−+

+ +

⎡ ⎤⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                                       (10) 

where η  is the elasticity of intertemporal substitution, 1
1 1

γκ
η

−
≡

−
, and mtR  is the 

return on the market portfolio at any time t. The set of parameters to be estimated is 

given by { }, ,θ β γ η= . 

Similarly, the specification under ultimate consumption risk and recursive utility 

becomes, 

                                
1

S S 1 1t 1 S
t 1 mt 1 S ft 1 S

t

C
M R R

C

κη
κβ

−
+ −+ +

+ + + + +

⎡ ⎤⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                   (11)      

Yogo (2006) incorporates durable consumption to the marginal utility using a 

recursive preferences specification in which both types of consumption are not 

separable. The idea is, as usual, to increase the volatility of marginal consumption. The 

contemporaneous SDF is given by, 

( )
( )

( ) ( )( 1 )1 ( 1)
1 1t 1 t 1t 1

t 1 mt 1( 1)t t t

1 D CC
M R

C 1 D C

κη ρ η ρη ρ ρ
κ

ρ ρ
α α

β
α α

− −− −
−+ ++

+ +−

⎡ ⎤⎛ ⎞− +⎛ ⎞⎢ ⎥⎜ ⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ − +⎢ ⎥⎝ ⎠⎣ ⎦

(12) 

                                                 
12 Somewhat surprisingly, the same time lag is found by Parker and Julliard with U.S. data. 
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where tD  is aggregate per-capita stock of durable consumption as calculated in time t, 

α  is the expenditure share of the durable consumption good, and ρ  is the elasticity of 

substitution between durable and non-durable consumption. Hence, the set of 

parameters is given by { }, , , ,θ β γ η α ρ= . 

As before, this paper analyzes the durable consumption-based asset pricing 

model under the perspective of ultimate consumption risk. In this case, the SDF 

becomes, 

( )
( )

( ) ( )( 1 )1 ( 1 )
t 1 S t 1 SS S 1 t 1 S

t 1 ( 1 )t t t

1
mt 1 S ft 1 S

1 D CC
M

C 1 D C

                                                          R R

κη ρ η ρη ρ ρ

ρ ρ

κ

α α
β

α α

− −− −
+ + + ++ + +

+ −

−
+ + + +

⎡ ⎤⎛ ⎞− +⎛ ⎞⎢ ⎥⎜ ⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ − +⎢ ⎥⎝ ⎠⎣ ⎦

×

                                                                                                                                       (13) 

Finally, the SDF under the external habit persistence model of Campbell and 

Cochrane (1999) is given by, 

                                                t 1 t 1
t 1

t t

SC C
M

SC C

γ
β

−
+ +

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                         (14)               

where tH  is the level of habits and t t
t

t

C H
SC

C
−

=  is a state variable known as “surplus 

consumption ratio” that allows to capture dependencies among states of nature. It is 

important to point out that tSC  is a recession indicator; it is low after several quarters of 

consumption declines and high in booms. It should be noted that the recognition of 

habits eliminates the need of including long-run consumption growth rates in the SDF. 

The nature of habits should be playing the equivalent role of ultimate consumption risk. 

Under this specification, relative risk aversion changes with the surplus 

consumption ratio, 

                                                      t
t

AR( SC )
SC
γ

=                     (15) 
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Hence, with recessions, as consumption falls toward habit, people become less 

willing to tolerate further falls in consumption and they become more risk averse. 

Next, we define the habit formation process. Level of habits can be written as a 

function of past consumption. We use consumption growth rates to ensure that the 

function is stationary to get 

                                               t 1 t L
t t

t t

C C
H C g ,....,

C C
− −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                          (16) 

A reasonable function that guarantees t tH C<  is the following: 

                                                      ( ) ( ) 1xg x h 1 e
−−= +                                              (17) 

where h is the global habit persistence parameter,  

2 Lt 1 t 2 t L

t t t

C C C
x ....

C C C
δ δ δ− − −⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

, with 0 h 1≤ ≤ , 0 1δ≤ ≤ , and it is verified 

that ( )0 g x 1≤ ≤ .  

Therefore, the habit specification is given by 

                             

1C C Ct 1 t 2 t L2 L....
C C Ct t t

t tH C h 1 e
δ δ δ

−
⎛ ⎞− − −− + + +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

                    (18) 

In the actual estimation of this model, and to be consistent with ultimate 

consumption risk, L will be 12 quarters. The set of parameters to be estimated is 

{ }, ,h,θ β γ δ= . 

 

4. Data and Some Preliminary Results 

We have calculated quarterly real non-durable and durable Spanish consumption 

growth from 1962 to 2003. In fact, aggregate annual consumption data are available 

from 1954 to 2003. The Spanish National Accounts do not distinguish between non-



 14

durable and durable consumption; however, there exists a detailed classification of 

consumption expenditure by type of goods in two alternative sources: Uriel, Moltó and 

Cucarella (2000) for the 1954-1994 period, and those published in the Spanish National 

Accounts for the years between 1995 and 2003. We have linked these series including, 

as non-durable consumption goods and services, the following items: food products, 

beverages and tobacco; clothing and footwear; household rental, heating and lighting; 

household entertainment goods and services; medical and healthcare services; 

maintenance of means of personal transport; use of public transport; communications; 

entertainment and culture; other goods and services. The following concepts are 

classified as durable consumption: furnishing, accessories and household goods; 

purchase of vehicles; articles related to entertainment, sport and culture; books, 

newspapers and magazines; teaching. In both cases, we use data at constant 1986 prices 

and the series are adjusted for seasonality. 

Unfortunately, disaggregated quarterly data by type of consumption are not 

available for the Spanish case. We have converted annual into quarterly figures 

applying the procedure described in Casals, Jerez and Sotoca (2005).13  

The nondurable good is entirely consumed in the period of purchase, whereas 

the durable good provides service flows for more than one period. We compute the 

quarterly service flow for period t, which we denote by tD , using the following motion  

   
48

t t
0

D (1 dep )G τ
τ

τ −
=

= −∑ ,    (19) 

where tG  is durable consumption expenditure in quarter t, dep is the quarterly 

depreciation rate which takes the value of 1.875 percent, that is consistent with the 

depreciation rates of motor vehicles published by the Ministry of Economy and Public 

                                                 
13 The desegregation has been made following standard state-space techniques. The desegregation 
employs the information contained in a quarterly instrument and the specific technique is based on the 
principle of empirical consistency. This implies that, given the aggregation constraint, the models relating 
the variables in high and low sampling frequencies should be mutually compatible. We use quarterly car 
registrations published by ANFAC (Spanish Motor Vehicle Manufacturers’ Association) as the 
instrument for computing quarterly durable consumption and the total production of manufactured goods 
index published by the INE (Spanish Statistics Agency) as an indicator of quarterly non-durable 
consumption goods. The estimation procedures are implemented in a Matlab toolbox for time series 
modeling called E4, which can be downloaded at www.ucm.es/info/icae/e4.  
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Finance. The quarterly service flow series is computed using 48 durable consumption 

expenditure lags.14  

Finally, we have real returns on the equally-weighed market portfolio and ten 

equally-weighted size-sorted portfolios from 1963 to 2003. Moreover, quarterly real 

interbank rate is used as the risk-free rate between 1963 and 1987. Since then, the real 

three-month Treasury bill rate is employed as the proxy for the riskless rate. The 

consumer price index has been used to deflate all nominal figures. 

The Hansen and Jagannathan (1991) bound shows that the volatility of the 

stochastic discount factor satisfies the following relation: 

         ( ) ( ) ( )( ) ( ) ( )( )
1 2

1
N NM 1 E M E R 1 E M E Rσ Σ −⎡ ⎤′≥ − −⎢ ⎥⎣ ⎦

                  (20) 

where N1  and R are the N-vector of ones and returns respectively, and Σ  is the 

variance-covariance matrix of returns. Any sensible SDF should satisfy this bound. We 

will therefore use this expression to select feasible consumption-based SDFs. 

In particular, the Hansen-Jagannathan volatility bound is estimated with realized 

returns on the ten size-sorted portfolios and for a range of different values for E( M ) . 

Figure 3 displays the feasible region for the SDF implied by the available equity data 

from 1963 to 2003. The minimum standard deviation of the SDF associated to the 

realized mean risk-free rate (1.5 percent quarterly) is about 0.35, corresponding to a 

mean SDF of about 0.985.  

Figure 4 displays the volatility of the SDF using expression (20) but now 

calculated with overlapping sub-periods of 5 years of quarterly data from ten size-sorted 

portfolios. Each point shown in Figure 4 is the volatility bound for the given average 

level of the risk-free interest rate for each of the sub-periods. As long as this volatility is 

associated with the distance between the risk-neutral and objective probabilities, as 

suggested in Section 2, we may identify these changes in volatility with time-varying 

                                                 
14 It must be pointed out that purchase of vehicles constitutes the principal component of the durable good 
expenditure. A linear depreciation assumption consisting in a 1.875 percent rate gives the durable good a 
value of 10 percent after 48 quarters, which concords with the official depreciation rates published by the 
Ministry. The first observations had to be calculated with a smaller number of lags, since the original data 
started in 1954. 
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economic fears.15 Figure 4 also contains Spanish macroeconomic recession bars in grey 

and stock market recessions in salmon as roughly identified by a continuous decreasing 

period in the level of the Spanish stock market index.16 The stock market recessions 

tend to be slightly ahead of macroeconomic recessions. It is clear that there are 

substantial differences over time in the volatility of the SDF which satisfies the Hansen-

Jagannathan bound. The issue is of course whether these differences are associated with 

changing recession fears reflecting the distance between the probability measures. In 

any case, and from an option pricing point of view, it is interesting to point out that the 

volatility of the SDF has not experienced a permanent increase after the crash of 1987, 

even though it displays an increase just before October 1987.  

 

5. The Estimation of Parameters for Alternative SDF Specifications 

This section selects appropriate parametric SDFs using consumption data and 

stock returns from the Spanish economy. The idea is to study the behavior of the 

volatility of alternative specifications of consumption-based SDFs. Appropriateness is 

understood as those SDFs that generate pairs of ( )E M and ( )Mσ  which enter in the 

feasible region shown in Figure 3. 

All specifications discussed in Section 3 are analyzed here. In particular, we 

explore the traditional power utility of equation (7), the recursive utility specification of 

expression (10), the long-run version of recursive utility (recursive long) given by (11), 

the durable SDF suggested by Yogo (2006) as in equation (12), its long-run version 

(Yogo long) given by (13), and the habit persistence model described in equations (14) 

and (18). We also consider a power utility model with both durable and non-durable 

consumption growth rates. This former specification of the SDF and the traditional 

power SDF are not able to generate pairs of means and volatilities of M which enter in 

the Hansen-Jagannathan region. For this reason, we do not discuss the behavior of the 

volatility of the SDF for any of these two models. 

                                                 
15 Since the risk-free rate is not constant over the whole period, we multiply the Hansen-Jagannathan 
volatility bounds by the average risk-free rate for each sub-period to generate comparable upper bounds 
across time. This is consistent with expression (6). 
16 The macroeconomic recession periods are taken from Gómez-Biscarri (2005) who locates the 
expansionary and recessionary periods by dating the turning points of the industrial production index 
using the Bry-Boschan procedure. 
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Specifically, for each SDF, we try a large grid of feasible preference parameters. 

We then select sets of combinations of those parameters that generate a volatility of the 

SDF which lies above the Hansen-Jagannathan bound of 0.35 reported in Figure 3. 

Given the selected SDFs, we compute the pricing error of each of these SDF in 

valuating the ten size-sorted portfolios returns. Figure 5 displays the ten pricing kernels 

with the lowest mean-squared pricing errors for each of the five SDF specifications 

analyzed. Finally, we choose, for each SDF specification, the preference parameters that 

simultaneously make the SDF to enter inside the feasible mean-volatility space and 

have the lowest error in pricing the ten portfolios.  The results are shown in Table 1.  

Table 1 contains the parameter estimates, the volatility of M, the mean of M, and 

the mean-squared pricing error for each of the five SDFs chosen throughout the 

empirical exercise. The lowest mean-squared pricing error is obtained for the habit 

preference specification. However, it should be noted the large volatility and the low 

mean of M generated by this specification. It is interesting to note that recursive long 

and Yogo long also have a relatively low mean-squared pricing error, but their success is 

also accompanied by relatively large volatility and low mean of M. On the other hand, 

the contemporaneous recursive and Yogo models generate a pair of ( )E M and ( )Mσ  

which is very close to the minimum historical figures for feasible SDFs. Unfortunately, 

the mean-squared pricing error is higher than in the other three cases. In general, habit 

persistence and long-run consumption growth models have very volatile SDFs and quite 

low pricing errors. Moreover, the two long-run versions are able to generate these 

characteristics with very reasonable levels of risk aversion. In fact, both recursive long 

and Yogo long SDFs have a very similar behavior both on average and over time. It 

seems that the combination of long-run consumption growth and the inclusion of the 

market portfolio return in the SDF through recursive preferences are key properties of 

potentially valid SDFs. Both models potentially capture the business cycle behavior of 

the economy which probably explains the success in pricing the ten size-sorted portfolio 

returns. 

Figure 6 represents, over time and across recessions, the five SDFs reported in 

Table 1. In general, all SDFs tend to be high at the very beginning of (or even just 

before) recessions and low at the end of recessions (beginning of expansions). This is 

particularly the case for the habit, recursive long and Yogo long specifications. 
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However, as expected, given the estimates reported in Table 1, the habit persistence 

model displays a very volatile behavior.   

Figure 7 displays the volatility of the five SDFs estimated with five years of 

overlapping data.17 The volatility of the SDF for the recursive long and Yogo long cases 

seem to experience an increasing behavior at the beginning of recessions. Our logic 

indicates that the overall absolute distance between risk-neutral and objective 

probability distributions becomes also larger just before or at the beginning of 

recessions. Therefore, it seems that ( )Mσ  for the cases of SDFs with ultimate 

consumption risk and recursive preferences capture time-varying economic fears of 

investors. However, more formal tests are necessary before reaching further and more 

precise conclusions. 

 

6. Economic Cycles, Financial Market Uncertainty and the Volatility of 

Consumption-based Stochastic Discount Factors 

As we have just argued, the volatility of the SDF may reflect the distance between the 

risk-neutral and objective probability distributions, which contains economic fears 

implicit in the investment behavior of investors. If so, the volatility of the SDF not only 

should contain information about the economic uncertainty, but it should also be able to 

predict future realized macroeconomic cycles. Both features are analyzed in this section.    

The first analysis consists on determining whether the overlapping standard 

deviation of our five SDF specifications incorporates information about the future of 

two selected state variables: the growth rate of the industrial production index and the 

stock market returns.    

We therefore perform the following OLS autocorrelation-robust-standard-error 

regressions for our five alternative SDF specifications: 

              ( )t j t
t t

t

IPI IPI
M  , 1,2,4,8,12

IPI τα βσ ε τ+
+

−
= + + =                       (21) 

                                                 
17 These volatilities are multiplied by the corresponding average risk-free rate over the period. 
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where tIPI  is the quarterly Industrial Production Index for quarter t. 

A similar regression is run for the market return index, 

                   ( )mt j t tR M  , 1,2,4,8,12τα βσ ε τ+ += + + =                             (22) 

The estimation results of regressions (21) and (22) are reported in Panels A and 

B of Table 2, respectively. Both Panels show that for all specifications of the SDF, 

increases in the volatility of the SDFs are significantly associated with both a recession 

in the macroeconomic cycle of the Spanish economy and decreasing stock market 

behaviour.  This is consistent with Figure 7. Moreover, for most cases, the predicting 

ability of the volatility of SDF increases with the horizon used in regressions. Hence, 

from an empirical point of view, the volatility of appropriated-selected consumption-

based SDFs seems to be a powerful measure of future economic cycles. We may 

therefore be confident arguing that higher volatility of sensible SDFs reflects in fact a 

larger distance between the risk-neutral and objective probabilities. Hence, larger 

implicit fears in the stock market seem to be significantly negatively correlated with 

future changes in industrial production and stock market returns. 

Because the volatility of the discount factor is very persistent, we also calculate 

the bias-corrected estimator and the corresponding bias-corrected t-statistic proposed by 

Amihud and Hurvich (2004). These authors suggest an augmented regression method 

for hypothesis testing in predictive regressions with multiple autoregressive predictor 

variables. Their simulations show that their adjustment outperforms other bias-

correction methods such as those suggested by Stambaugh (1999) or Lewellen (2004). 

Although the new t-statistics tend to be lower than the ones reported, these adjustments 

do not change the qualitative conclusions drawn from Table 2.  

Interestingly, the largest explanatory power, when forecasting macroeconomic 

cycles at any horizon, corresponds to the recursive preference specification with 

contemporaneous consumption. On the other hand, we need to incorporate ultimate 

consumption risk if we want to explain the future behaviour of stock market returns. 

This is especially true for longer horizons. It is probably reasonable to recall that SDF 

specifications with recursive preferences and long-run consumption growth provide a 
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low pricing error and a relatively high volatility of the SDF. In this sense, the results 

from Panel B of Table 2 are consistent with the evidence reported in Table 1.  

The second question is whether the consumption-based SDFs and their 

volatilities are able to explain forward looking measures of stock market uncertainty and 

risk aversion.  

As a measure of market uncertainty, we employ the implied volatility of ATM 

call and put options on the future of the Spanish market stock index. Unfortunately, we 

only have monthly implied volatilities from October 1996 to December 2004.18 On the 

other hand, the difference between the monthly probabilistic mass assigned to the 10 

percent left tail of the risk-neutral distribution and the risk-adjusted distribution under a 

power utility function will be used as a measure of risk aversion. The extreme left-tailed 

events corresponds to bad states of nature which suggests that this difference should 

always be positive, since risk-neutral probabilities tend to pay more attention to 

unpleasant states relative to objective probabilities. This is the risk adjustment implicit 

in risk-neutral pricing and can be interpreted as a measure of ex-ante risk aversion. 

These differences in probabilistic mass are also available only from October 1996 to 

December 2004.19  

Figure 8 displays our two measures of ex-ante uncertainty and risk aversion.20 

The similarities between both variables are striking. It suggests that implied volatility 

contains information about the distance between the risk-neutral and objective 

probability measures in the left tail of the distribution. Hence, implied volatility seems 

to incorporate implicit fears that investors have about potential crashes of the stock 

market. In other words, the difference between both probabilistic masses reflects the 

extra probability associated with unpleasant states of nature. Interestingly, it seems that 

implied volatility extracted from option prices also contains this extra probability. 

                                                 
18 These data are the same used by Alonso, Blanco and Rubio (2006) when estimating risk-neutral and 
risk-adjusted densities in the Spanish option market.  
19 Alonso, Blanco and Rubio (2006) explore alternative utility specifications. Interestingly, independently 
of the stochastic discount factor employed, they cannot reject the hypothesis that risk-adjusted densities 
provide adequate predictions of the distributions of future realizations of the Spanish market index at four 
and eight-week horizons. Hence, all risk-adjusted densities generate similar forecasting statistics. In our 
case, we just take the simplest risk adjustment from the power utility specification. As discussed in 
footnotes 2 and 3 of this work, we impose a risk aversion coefficient of 1.67, which is the implied level of 
risk aversion that maximize the predicting ability of the resulting risk-adjusted density. 
20 They are transformed into quarterly figures. 
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Despite the fact that we have few observations on these measures, we perform a 

series of regressions to illustrate whether the SDF specifications and their volatilities are 

able to explain ex-ante uncertainty and risk aversion. In particular, we run the following 

OLS autocorrelation-robust-standard-error regressions for our five alternative SDF 

specifications: 

                                             1tt
1t

1tt M
IV

IVIV
+

−

− ++=
−

εβα                                           (23) 

                                                   1ttt MIV +++= εβα                                                  (24) 

                                                ( ) 1ttt MIV +++= εβσα                                               (25) 

where tIV  is the implied volatility of ATM options at the last month of quarter t, 1tIV −  

is the implied volatility at the last month of the previous quarter, and tM  is the 

stochastic discount factor for quarter t. 

Moreover, we also run the following regressions, 

                                          1tt
1t

1tt M
LT

LTLT
+

−

− ++=
−

εβα                                         (26) 

                                               1ttt MLT +++= εβα                                               (27) 

                                             ( ) 1ttt MLT +++= εβσα                                            (28) 

where tLT  is the difference between the probabilistic mass assigned by the risk-neutral 

distribution and the risk-adjusted distribution for the 10 percent left-tail at the last 

month of quarter t. 

The results from regressions (23), (24) and (25) are reported in Table 3, Panels 

A, B, and C respectively. Independently of the specification employed, the results show 

that the recursive SDF and Yogo’s specification with contemporaneous consumption 

are able to explain market uncertainty as measured by implied volatility. Both, the SDF 

itself and its volatility are positively and significantly related with ex-ante uncertainty. 
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As expected, given the results from Figure 8, the results using our measure of 

risk aversion are the same. This evidence is contained in Table 4 with Panels A, B, and 

C for regressions (26), (27), and (28), respectively.  

We may therefore conclude that, when trying to explain short-run uncertainty or 

risk aversion, the simplest recursive utility specification is powerful enough to 

significantly describe either levels or changes or uncertainty and risk aversion. The 

caveat is, of course, that we have a very limited time-series of uncertainty and risk 

aversion measures. In this sense, SDFs with ultimate consumption risk have even less 

observations. Moreover, these types of specifications clearly capture economic cycles. 

However, implied volatilities experience pronounced changes from one month to 

another. This represents a serious difficulty for either habit or ultimate consumption 

risk-based SDFs when trying to explain uncertainty or risk aversion from one period to 

another.21  

 

7. A Robustness Analysis using U.S. Market Data 

We use seasonally adjusted quarterly aggregate nominal expenditure on 

consumer nondurable and services for the period 1962-2003 from National Income and 

Product Accounts (NIPA). We also take population numbers and price deflator from 

NIPA to construct the time series of per capita real nondurable consumption numbers 

necessary for this section. On the other hand, durable consumption consists of items 

such as motor vehicles, furniture and appliances, and jewelry and watches. These are 

also taken from NIPA and we follow Yogo’s procedure to construct the corresponding 

quarterly time series. The returns on the ten size-sorted portfolios, the risk-free return 

and the market returns are taken from Kenneth French’s website. 

The procedure is exactly the same followed for the Spanish case. First of all, 

Figure 9 displays the overlapping 5-years sub-periods of the volatility of the SDF 

estimated by equation (5).22 The volatility tends to increase in the quarters before 

macroeconomic recessions as defined by the NBER. Secondly, the consumption-based 

                                                 
21 See the related evidence of Beber and Brandt (2006). They find that when there is a lot of ex-ante 
uncertainty about macroeconomic fundamentals and new data is released, overall uncertainty and implied 
volatility significantly diminish in the U.S. market. 
22 As in the Spanish case, we multiply the volatility by the average risk-free rate of each sub-period. 
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SDF of section 3 are estimated for the U.S. case. Once again, the smaller pricing errors 

are for the long-run consumption risk specifications. Interestingly, the habit persistence 

model displays a pricing error as high as the contemporaneous recursive and durable 

models. Thirdly, the selected SDFs are displayed in Figure 10, and their volatilities are 

contained in Figure 11. In both cases, it seems clear that the behavior of the SDFs 

closely follow the behavior of the Spanish counterparts. Fourthly, the predicting ability 

of the volatility of the SDFs is not as strong as in the Spanish case. However, once 

again, the recursive and Yogo specifications have more forecasting ability for 

macroeconomic recessions, while stock market returns are better captured by the long-

run specifications. Finally, uncertainty is measured by the CBOE Volatility Index 

(VIX), which has become the benchmark for the U.S. stock market implied volatility. 

Although the magnitudes of the R-squares are lower than for the Spanish case, the SDFs 

based on recursive and Yogo specifications also show a better explanatory power than 

its long-run counterparts. These overall similarities tend to provide a reasonable level of 

confidence on the results using Spanish data. 

 

8. Conclusions 

In this paper we present convincing empirical evidence showing that the 

volatility of appropriated-selected consumption-based SDFs measure implicit recession 

fears of investors. The volatility of the SDF specifications with lowest pricing errors 

and high volatility are reported to have a reasonable predicting ability of future market 

recessions. In particular, a recursive utility SDF with long-run consumption risk (either 

with or without durable goods) are able to explain up to a 23.5 percent of future market 

returns at long horizons. The volatility of the habit-based SDF also has a good 

forecasting capacity at short horizons. This seems to be related with the extremely high 

volatility of this SDF.  

On the other hand, the volatility of the SDF specification with recursive 

preferences and contemporaneous consumption growth, which is characterized by a 

relatively low volatility, seems to be the most powerful specification in capturing future 

macroeconomic cycles approximated by changes in the industrial production index. 

Thus, the volatility of this SDF explains between 9.3 and 34.4 percent of the future 
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macroeconomic growth at short and long horizons respectively. Interestingly, the SDF 

under the recursive-based utility specification also explains up to 40.5 percent of market 

uncertainty and risk aversion.  

Given the results from the robustness analysis using U.S. data, we may conclude 

that the volatility of consumption-based SDFs seems to be a powerful indicator of both 

economic and stock market cycles. It suggests a strong connection between financial 

markets and the real economy which deserves future attention. Extending this work to 

additional economies and performing truly out-of-sample tests seem to be a promising 

future avenue of research. Additionally, the use of SDFs based on a rational 

disappointment aversion utility function that embeds downward risk, as discussed by 

Ang, Chen and Xing (2006), may be a potentially interesting way of directly modeling 

larger aversion to losses relative to the attraction to gains. 

 



 25

References 
 
Alonso, F., Blanco, R. and G. Rubio (2006), Option-Implied Preferences Adjustments, 
Density Forecasts, and the Equity Risk Premium, Working Paper 0630, Bank of Spain. 
 
Amihud, Y. and C. Hurvich (2004), Predictive Regressions: A Reduced-Bias Estimation 
Method, Journal of Financial and Quantitative Analysis, Vol. 39, 813-841. 
 
Ang, A., J. Chen and Y. Xing (2006), Downside Risk, Review of Financial Studies, Vol. 
19, 1191-1238. 
 
Bakshi, G., Z. Chen, and E. Hjalmarsson (2004), Volatility of the Stochastic Discount 
Factor, and the Distinction between Risk-Neutral and Objective Probability Measures, 
Working Paper, Yale School of Management. 
 
Beber, A. and M. Brandt (2006), Resolving Macroeconomic Uncertainty in Stock and 
Bond Markets, Working Paper, Fuqua School of Business, Duke University. 
 
Benzoni, L., P. Dufresne and R. Goldstein (2005), Can Standard Preferences Explain 
the Prices of Out-of-the-Money S&P Put Options?, NBER Working Paper No. 11861.  
 
Bliss, R. and N. Panigirtzoglou (2004), Option-implied Risk Aversion Estimates, Journal 
of Finance, Vol. 59, 407-446. 
 
Breeden, D. and R. Litzenberger (1978), Prices of State Contingent Claims Implicit in 
Option Prices, Journal of Business, Vol. 51, 621-652. 
 
Brennan, M., A. Wang and Y. Xia (2004), Estimation and Test of a Simple Model of 
Intertemporal Capital Asset Pricing, Journal of Finance, Vol. 59, 1743-1775. 
 
Campbell, J. (1996), Understanding Risk and Return, Journal of Political Economy, 
Vol. 104, 298-345. 
 
Campbell, J. and J. Cochrane (1999), By Force of Habit: A Consumption-Based 
Explanation of Aggregate Stock Market Behavior, Journal of Political Economy, Vol. 
107, 205-251. 
 
Casals, J., M. Jérez and S. Sotoca (2005),  Empirical Modelling of Time Series 
Sampling at Different Frequencies, Working Paper Series, Universidad Complutense de 
Madrid, Departamento de Fundamentos del Análisis Económico II. 

 
Chabi-Yo, F., R. Garcia and E. Renault (2005), State Dependence in Fundamentals and 
Preferences Explain Risk Aversion Puzzle, Working Paper Series, Bank of Canada. 
 
Chen, X. and S. Ludvigson (2004), Land of Addicts? An Empirical Investigation of 
Habit-Based Asset Pricing Behavior, Working Paper 10503, National Bureau of 
Economic Research, Cambridge. 
 



 26

Gómez-Biscarri, J. (2005), Dating Recessions from Industrial Production Indexes: An 
Analysis for Europe and the U.S., Working Paper no. 05/02, Facultad de Ciencias 
Económicas y Empresariales, Universidad de Navarra. 
 
Hansen, L., and R. Jagannathan (1991), Implications of Security Market Data for 
Models of Dynamic Economies, Journal of Political Economy, Vol. 99, 225-262. 
 
Jackwerth, J. (2000), Recovering Risk Aversion from Option Prices and Realized 
Returns, Review of Financial Studies, Vol. 13, 433-451. 
 
Lewellen, J. (2004), Predicting Returns with Financial Ratios, Journal of Financial 
Economics, Vol. 74, 209-235. 
 
Li, Y. (2001), Expected Returns and Habit Persistence, Review of Financial Studies, 
Vol. 14, 861-899. 
 
Márquez, E. and B. Nieto (2007), Further International Evidence on Durable 
Consumption Growth and Long Run Consumption Risk, Mimeo, University of Alicante, 
Spain. 
 
Merton, R. (1973), An Intertemporal Capital Asset Pricing Model, Econometrica, Vol.  
41, 967-887. 
 
Parker, J. and C. Julliard (2005), Consumption Risk and the Cross-Section of Expected 
Returns, Journal of Political Economy, Vol. 113, 185-222. 
 
Stambaugh, R. (1999), Predictive Regressions, Journal of Financial Economics, Vol. 5, 
375-421. 
 

Uriel, E., M. Moltó  and V. Cucarella (2000), Contabilidad Nacional de España: Series 
enlazadas 1964-1997, Fundación BBVA, Madrid. 

 
Yogo, M. (2006), A Consumption-Based Explanation of Expected Stock Returns, 
Journal of Finance, Vol. 61, 539-580. 



 27

 
 
 

 
Table 1 

Estimated Parameters and Moments for Alternative Stochastic Discount Factors  
with Lowest Pricing Error 

1965-2003 
 

SDF   β  γ  η  α  ρ  δ  h  ( )ME  ( )Mσ  
Error 

Pricing  

Recursive 
 

0.880 29 -0.05 N.A. N.A. N.A. N.A. 0.9777 0.3561 0.2891 

Recursive  
Long-Run 

Growth 

0.925 1.5 -0.05 N.A. N.A. N.A. N.A. 0.9263 0.5458 0.0573 

Yogo 
 

0.820 25 -0.05 0.85 0.95 N.A. N.A. 0.9650 0.3893 0.1472 

Yogo  
Long-Run 

Growth 

0.980 1.2 -0.02 0.95 0.85 N.A. N.A. 0.9299 0.5536 0.0576 

Habit 
 

0.800 150 N.A. N.A. N.A. 0.50 0.99 0.9285 0.8668 0.0342 

β  is the subjective discount factor for future period utility; γ is the coefficient of relative risk aversion; 
η is the elasticity of intertemporal substitution; α  is the expenditure share of the durable consumption 
good; ρ is the elasticity of substitution between durable and non-durable consumption; δ  is the weight 
associated with past consumption; h is the global habit persistence parameter; and pricing error is the 
mean squared error over ten size-sorted portfolios. 
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Table 2 

 
Panel A: Future Industrial Production Index and the Volatility of SDFs 

( )t 1 t
t t 1

t

IPI IPI
M

IPI
+

+

−
= + +α βσ ε  

  Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant 0.024 (4.00)1/ 0.019 (3.66) 0.016 (4.40) 0.019 (4.42) 0.019 (4.41) 
Slope -0.049 (-2.78) -0.039 (-2.38) -0.012 (-2.53) -0.030 (-2.92) -0.030 (-2.90) 

1 
Quarter R2 (%) 9.27  6.73  7.83  7.90  7.95  

Constant 0.047 (3.88) 0.038 (3.63) 0.033 (4.45) 0.038 (4.41) 0.038 (4.40) 
Slope -0.095 (-2.71) -0.077 (-2.38) -0.024 (-2.66) -0.060 (-2.90) -0.058 (-2.87) 

2 
Quarters R2 (%) 16.08  12.07  14.59  13.91  13.99  

Constant 0.095 (3.91) 0.078 (3.76) 0.063 (4.30) 0.074 (4.33) 0.074 (4.32) 
Slope -0.191 (-2.79) -0.155 (-2.53) -0.045 (-2.66) -0.115 (-2.82) -0.112 (-2.79) 

4 
Quarters R2 (%) 20.74  15.83  16.32  16.42  16.52  

Constant 0.189 (4.69) 0.156 (4.51) 0.108 (3.65) 0.147 (4.80) 0.146 (4.81) 
Slope -0.382 (-3.55) -0.315 (-3.35) -0.064 (-2.13) -0.234 (-3.36) -0.227 (-3.34) 

8 
Quarters R2 (%) 31.05  24.74  12.25  25.69  25.66  

Constant 0.271 (4.82) 0.225 (4.56) 0.154 (3.59) 0.220 (5.18) 0.218 (5.21) 
Slope -0.531 (-3.56) -0.442 (-3.33) -0.085 (-2.02) -0.352 (-3.92) -0.342 (-3.92) 

12 
Quarters R2 (%) 34.41  28.04  12.47  33.23  33.32  

Panel B: Future Market Portfolio Returns and the Volatility of SDFs 
( )mt 1 t t 1R M+ += + +α βσ ε  

  Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant 0.074 (2.27) 0.040 (1.41) 0.080 (3.59) 0.093 (3.42) 0.092 (3.43) 
Slope -0.155 (-1.73) -0.055 (-0.65) -0.086 (-3.31) -0.199 (-2.92) -0.194 (-2.91) 1 

Quarter R2 (%) 1.93  0.28  8.39  7.16  7.17  
Constant 0.150 (2.39) 0.083 (1.51) 0.159 (3.40) 0.192 (3.43) 0.190 (3.45) 
Slope -0.311 (-1.85) -0.113 (-0.70) -0.166 (-3.12) -0.414 (-3.02) -0.403 (-3.02) 2 

Quarters R2 (%) 3.14  0.48  12.55  12.39  12.45  
Constant 0.329 (2.64) 0.187 (1.74) 0.289 (2.80) 0.416 (3.52) 0.412 (3.54) 
Slope -0.684 (-2.24) -0.273 (-0.91) -0.277 (-2.40) -0.888 (-3.31) -0.866 (-3.31) 4 

Quarters R2 (%) 5.52  1.03  12.79  20.54  20.70  
Constant 0.637 (2.58) 0.354 (1.88) 0.517 (2.18) 0.894 (3.35) 0.884 (3.36) 
Slope -1.178 (-2.27) -0.337 (-0.68) -0.402 (-1.54) -1.860 (-3.46) -1.811 (-3.47) 8 

Quarters R2 (%) 4.28  0.41  7.10  23.39  23.49  
Constant 0.787 (2.07) 0.463 (1.71) 0.733 (2.05) 1.295 (2.98) 1.282 (2.99) 
Slope -1.065 (-1.43) -0.070 (-0.10) -0.454 (-1.24) -2.501 (-2.90) -2.433 (-2.91) 12 

Quarters R2 (%) 1.68  0.01  4.35  20.35  20.40  
1/ Robust t-statistics in parentheses 

tIPI  is the industrial production index in quarter t, mtR  is the market return in quarter t, and ( )tMσ  is 

volatility of the stochastic discount factor for quarter t. This volatility is estimated quarterly with five 

years of data. 
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Table 3 
Panel A: Changes in Implied Volatility and Stochastic Discount Factors 

1tt
1t

1tt M
IV

IVIV
+

−

− ++=
−

εβα  

SDF Constant 
( α̂ ) 

Slope 
( β̂ ) 

2R  
(%) 

Habit 0.052 
(0.58)1/ 

-0.002 
(-0.05) 

0.0 

Recursive -0.777 
(-2.71) 

0.889 
(3.10) 

36.4 

Yogo -0.822 
(-2.66) 

0.932 
(2.96) 

32.5 

Recursive Long 0.191 
(0.74) 

-0.130 
(-0.43) 

0.9 

Yogo Long 0.188 
(0.71) 

-0.125 
(-0.41) 

0.9 

Panel B: Implied Volatility and Stochastic Discount Factors 
1ttt MIV +++= εβα  

SDF Constant 
( α̂ ) 

Slope 
( β̂ ) 

2R  
(%) 

Habit 0.275 
(8.10) 

0.001 
(0.08) 

0.0 

Recursive 0.073 
(1.63) 

0.221 
(4.54) 

40.7 

Yogo 0.068 
(1.39) 

0.225 
(4.13) 

34.3 

Recursive Long 0.170 
(2.77) 

0.114 
(1.36) 

11.3 

Yogo Long 0.169 
(2.76) 

0.115 
(1.38) 

11.6 

Panel C: Implied Volatility and the Volatility of the Stochastic Discount Factors 
( ) 1ttt MIV +++= εβσα  

SDF Constant 
( α̂ ) 

Slope 
( β̂ ) 

2R  
(%) 

Habit 0.297 
(3.89) 

-0.031 
(-0.29) 

0.3 

Recursive 0.049 
(0.32) 

0.807 
(1.49) 

10.2 

Yogo -0.075 
(-0.50) 

1.480 
(2.33) 

17.4 

Recursive Long 0.312 
(3.43) 

-0.147 
(-0.42) 

0.5 

Yogo Long 0.291 
(3.42) 

-0.062 
(-0.19) 

0.1 

1/ Robust t-statistics in parentheses 
tIV  is the implied volatility of ATM options at the last month of quarter t, 1tIV −  is the implied 

volatility at the last month of the previous quarter, tM  is the stochastic discount factor for quarter t, and 

( )tMσ  is volatility of the stochastic discount factor for quarter t. This volatility is estimated quarterly 
with five years of data. 
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Table 4 
Panel A: Changes in Left-Tailed Probabilistic Mass Differences and Stochastic Discount Factors 

1
1

1

t t
t t

t

LT LT
M

LT
−

+
−

−
= + +α β ε  

SDF Constant 
( α̂ ) 

Slope 
( β̂ ) 

2R  
(%) 

Habit 0.287 
(1.24)1/ 

-0.002 
(-0.01) 

0.0 

Recursive -1.674 
(-1.88) 

2.108 
(2.15) 

25.8 

Yogo -1.716 
(-1.86) 

2.139 
(2.10) 

21.6 

Recursive Long 1.130 
(1.91) 

-0.933 
(-1.42) 

9.9 

Yogo Long 1.118 
(1.87) 

-0.914 
(-1.38) 

9.8 

Panel B: Left-Tailed Probabilistic Mass Differences and Stochastic Discount Factors 
1t t tLT M += + +α β ε  

SDF Constant 
( α̂ ) 

Slope 
( β̂ ) 

2R  
(%) 

Habit 0.028 
(4.22) 

-0.001 
(-0.52) 

0.3 

Recursive -0.012 
(-1.42) 

0.042 
(4.28) 

40.6 

Yogo -0.014 
(-1.41) 

0.043 
(3.93) 

34.8 

Recursive Long 0.004 
(0.33) 

0.024 
(1.40) 

12.4 

Yogo Long 0.004 
(0.31) 

0.024 
(1.43) 

12.8 

Panel C: Left-Tailed Probabilistic Mass Differences and the Volatility of the Stochastic Discount 
Factors 

( ) 1t t tLT M += + +α βσ ε  
SDF Constant 

( α̂ ) 
Slope 
( β̂ ) 

2R  
(%) 

Habit 0.034 
(2.32) 

-0.011 
(-0.56) 

1.2 

Recursive -0.018 
(-0.65) 

0.158 
(1.55) 

10.8 

Yogo -0.041 
(-1.55) 

0.282 
(2.49) 

17.4 

Recursive Long 0.032 
(1.79) 

-0.026 
(-0.38) 

0.4 

Yogo Long 0.028 
(1.68) 

-0.009 
(-0.14) 

0.1 

1/ Robust t-statistics in parentheses 
tLT  is the difference between the probabilistic mass assigned by the risk-neutral distribution and the risk-

adjusted distribution for the 10% left-tail at the last month of quarter t, 1tLT −  is the same difference at 
the last month of the previous quarter, tM  is the stochastic discount factor for quarter t, and ( )tMσ  is 
volatility of the stochastic discount factor for quarter t. This volatility is estimated quarterly with five 
years of data. 
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Figure 1 

Estimated Risk-Neutral Probability Density Functions from a Cross-section of Option 
Prices and Risk-Adjusted Density Functions with Power and Exponential Utility 
Functions before and after September 11th, 2001 
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Figure 2 
Difference between the Monthly Probabilistic Mass Assigned to the 10% Left Tail of 
the Risk-Neutral and the Risk-Adjusted Density Functions from 1996 to 2004 
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Figure 3 
Hansen-Jagganathan Volatility Bound 

1963-2003 
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Figure 4 

Hansen-Jagganathan Volatility Bound by Overlapping Five-Year Sub-periods 
1963-2003 
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Figure 5 

Hansen-Jagganathan Volatility Bound and Stochastic Discount Factor Models  
1963-2003 
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Figure 6 

Stochastic Discount Factors during Market and Macroeconomic Recessions 
1963-2003 
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Figure 7 

Stochastic Discount Factor Volatilities during Market  
and Macroeconomic Recessions 

1963-2003 
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Figure 8 

Capturing Uncertainty: Left-tail Probability Difference between Risk-neutral  
and Risk-adjusted Density Functions and Option-Implied Volatility 

1996-2004 
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Figure 9 

Hansen-Jagannathan Volatility Bound by Overlapping Five-Year  
Sub-periods for the U.S. Market 

1963-2003 
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Figure 10 

Stochastic Discount Factors during Macroeconomic Recessions for the U.S. Market 
1963-2003 
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Figure 11 

Stochastic Discount Factor Volatilities during Macroeconomic Recessions  
for the U.S. Market 

1963-2003 
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