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Abstract

We endogenize the learning rules in a modified version of Young’s (1993b).
The Nash Demand Game is played by two different populations. Players choose
their strategies in the light of some limited information about the strategies
players from the other population have used in the past. The better informed
population has higher bargaining power. The main drawback in Young’s model
is that the amount of information, and therefore the bargaining powers, are
fixed exogenously. We endogenize players’ learning rules and test for evolu-
tionary stability. We study whether one population using a particular learning
rule can be invaded by a mutant learning rules. We show that, when informa-
tion is costless, the only evolutionarily stable learning rule maximizes players’
information. If both populations follow the same learning rule, the equilibrium
which is selected is the symmetric Nash bargaining solution. When information
is costly there is a trade-off between costly learning and the rewards of being
well informed. Finally we show that an economy populated by players who
follow very simple imitative rules is socially more efficient than an economy of
rational players.



1 Introduction

A standard feature of bargaining games is their multiplicity of equilibria. In
the early fifties, Nash proposed two different approaches to solve the multiplicity
problem. In a first paper, Nash [6] formulated a set of axioms (Invariance, Sym-
metry, Pareto Efficiency and Independence of Irrelevant Alternatives) which
define properties that the outcome is required to satisfy, and which turn out
to characterize a unique solution to the bargaining problem. Nash describes a
‘bargaining problem’ with all von Neumann and Morgenstern utility pairs re-
presenting the possible agreements available to the bargainers, and the utility
pair that results in the case that no agreement is reached (the status quo).
Nash shows that the unique solution satisfying the four axioms is given by the
deal which maximazes the ‘Nash product’. When the Symmetry axiom, which
asserts that in a symmetric-situation, neither player will accept an agreement
giving him a lower utility than his opponent’s, is abandoned, the other axioms
together with the ‘bargaining powers’ associated to each player determine the
‘asymmetric’ Nash bargaining solution. In a second paper Nash [7] obtains pre-
cisely the same bargaining outcome by analyzing a static bargaining model, the
Nash Demand Game, in which the players simultaneously announce demands,
which they receive if and only if the demands announced are compatible. The
Nash Demand Game has many Nash equilibria (for example, any Pareto-efficient
outcome is a Nash equilibrium). In order to select only one equilibrium, Nash
required that an equilibrium be robust to perturbations involving some uncer-
tainty about the location of the Pareto frontier of the negotiation set S. When
the perturbed Demand Game approaches the unperturbed game (for which the
Pareto boundary is known with certainty), all the Nash equilibria of the per-
turbed game converge on the Nash solution (see Binmore [2] and [1])

The Nash solution is supported by various strategic models. Nash [7] himself,
with the perturbed Demand Game, provides a noncooperative support to his
axiomatic solution. Another noncooperative defense of the Nash solution is the
model of Rubinstein [8]. In Rubinstein’s model two players bargain over a pie
of size 1. Each period, one of the players proposes a partition and the other
player either rejects or accepts. In the latter case, the game finishes and the
agreement is implemented. If the offer is rejected, the play goes to the next
period, in which it is the rejecting player the one who makes the offer. The
unique subgame—perfect equilibrium of the game converges to the Nash bargai-
ning solution, when the time interval between subsequent offers approaches zero.
Furthermore, the bargaining powers are determined by the players’ time prefe-
rences. (See Rubinstein [8] for the assumptions under which his result holds).
In the case when the players are equipped with different discount factors it turns
out that the most patient player enjoys a larger bargaining power.



More recently, Young {10] has provided a new interpretation of the Nash bar-
gaining solution that still uses the Nash Demand Game, but leads to an asym-
metric outcome in which the players have different bargaining powers. However
the interpretation of these bargaining powers differs markedly from Rubinstein’s
interpretation. The approach followed by Young [10] is to embed the Nash De-
mand Game in an evolutionary framework in order to explain the emergence
and persistence of one particular outcome. An interesting feature of the model
is that it provides an appealing interpretation of the bargaining powers that
characterize the asymmetric Nash bargaining solution. In Young’s model the
Nash bargaining game, over how to share a pie, is played repeatedly by members
from two different large populations. Two players, one from each population,
are randomly selected to play the game; players announce a share of the pie
which they get if the demands are compatible, otherwise they get nothing. A
crucial assumption of Young’s model is that players learn how to play the game
from the past behaviour of members from the other population. Players have
access to a random sample, whose size may differ among players, drawn from
the most recent demands which have been announced by the opponents. They
take their sample as a predictor of the behaviour of the player they will face, and
usually play a best reply to the empirical distribution derived from the sample.
However, this behaviour is perturbed by rare ‘mutations’ so that sometimes the
players make mistakes and announce a demand that is not a best reply to any
possible sample.

An important feature of Young’s dynamic process is that, in the limiting case
when the mutation rate goes to zero, the system converges to a fixed Pareto-
efficient division that corresponds to the asymmetric Nash bargaining solution,
with the bargaining powers determined by the distribution of sample sizes. The
model implies that, when all members of the same population observe a sample
of the same size, it is the better informed population which gets the larger
share of the cake. A less appealing result is obtained when people with different
sample sizes coexist in the same population. In this case poorly informed players
exert a negative externality on the better informed members of their population.
The population’s bargaining power is determined by the members who draw the
smallest sample, even though such individuals may be present only in very small
numbers.

Young obtains the Nash bargaining solution under very weak informational
assumptions: Players only know their own preferences and a small sample of
what happened in some recent past. This is what typically happens in many
real world situations. Students seeking houses to rent know how much landl-
ords have asked in the past for similar apartments while landlords know by
experience how much students are willing to pay for a flat in some particular
areas. The model has several drawbacks. The crucial elements in determining
the population’s bargaining powers and therefore their shares of the cake are



fixed exogenously. Young leaves the most important element unexplained. The
model has the unsatisfactory prediction that the share received by a population
with one million types who use large samples is determined by just one further
type who uses a small sample. It does not explain why different types of players,
probably receiving different payoffs, may co-exist in the same population.

In this paper we endogeneize the size of the samples drawn by the players.
We will present a model similar to Young’s, but with the added feature that
people can change their learning rule by altering the sample size or ‘window’
used. We will assume that players observe the payoffs received by other mem-
bers from the same population and from time to time decide to imitate more
successful behaviours. It is therefore as though people care about their relative
performances within the social class to which they belong. If a learning rule
performs better than its rivals, it is natural to expect that it will be employed
by a growing proportion of people over time.

We can identify two opposite forces that affect the amount of information
gathered by the players. On the one hand, players with small samples are more
likely to draw a ‘wrong sample’ when the system is close to but not at a con-
vention and to play a non-optimal strategy. If information is free, big samples
will give a higher expected payoff. On the other hand, when the probability of
mistakes is small, the system is close to a convention most of the time and those
players who sample few elements will play optimally almost as often as players
with big samples. If sampling costs grow with the size of the sample taken,
‘small windows’ will do better, and evolution will tend to reduce the amount of
information gathered by the players.

In the paper we show that:

(i) When there are no sampling costs and the level of noise is arbitrarily small,
people with ‘larger’ window sizes perform better, on average, than people
with smaller sample sizes within the same population.

(i1) When there is no noise, for any positive sampling cost ‘smaller’ sample
sizes perform better than larger samples. In this extreme case the evolutio-
nary process converges with probability one to a convention and remains
there for ever. In.this case there is no need for agents to collect more
than one unit of information - it is enough to see one car to realize that
Londoners drive on the left. If we assume some type of imitation or Dar-
winian selection, we will observe, in a noiseless world, a tendency for ‘well
informed’ people to disappear.

(iii) When there are sampling costs, one can always find small enough levels
of noise such that the ‘smallest’ sample size will always pay best. The



intuition underlying this fact is that, as the noise vanishes, so also does
the advantage of sampling.

Finally, we characterize the evolutionarily stable sample sizes. The idea is to
allow the entry of new people who bring with them new behaviours and to test
their fitness in the enviroment. If there are samples that perform better than
others, they will invade the population because everybody will adopt them. In
the imiting case in which the noise tends to zero, we can characterize not only
the evolutionarily stable sample size, but also the long-run convention of the
system. We compare our results with a situation in which each population can
decide how much to sample. In particular we consider a thought experiment in
which the different populations elect a representative to play the game who is
committed to choosing a certain sample size. On comparing the Nash equili-
brium of this game, where sample sizes are the strategies, with the outcome of
an economy populated by uncoordinated myopic players who follow very simple
imitative behaviour, we find that the latter is socially more efficient. We shall
show that the economy of myopic players will always converge to the symmetric
bargaining solution while this is not necessarily true for the economy populated
by ‘rational’ players.

We offer an informal discussion of the case in which the asymptotic results
do not hold. The assumption of very small mistake rates is made, in the works of
Kandori et al. [4] and Young [9] and [10], for reasons of tractability rather than
because the noisy case is thought uninteresting. The results of some simulations
of the model show that, when the noise is large, the difference in the profitability
of different sample sizes depends not only on the level of noise but also on
the distribution of sample sizes in the populations. We provide a very simple
example in which, when sampling is costly, large sample sizes are better than
smaller ones for ‘intermediate’ levels of noise while they are worse for both small
and large noise rates.

The paper is organized as follows: In the next section we introduced the
model. In the third section we characterized players’ behaviour in terms of
their windows sizes which is useful to compare expected payoffs to players using
different learning rules. In the last two sections we present the main results of
the paper.

2 The model.

Suppose that the unperturbed Nash Demand Game is played once every period
by two players respectively drawn at random from two large populations which
we follow Young in calling population I (landlords) and population II (tenants).
Each player announces a share of the crop, and receives his demand only when
* the pair of demands 1s compatible. Each player forms his beliefs about the



enviroment he is facing knowing some part of the available information about
what other people have done in the past. Landlords (tenants) have access to
a ‘library’ that contains information about m past demands of members of the
other population. Players have access only to their own population’s library. A
landlord (tenant) decides what strategy to use by taking a random sample of
size k (w) from his population’s library and then playing the best reply to it.
Players from the same population may use samples of different sizes.

The information stored in the landlord’s (tenant’s) library evolves as follows.
Every time the game is played, the strategy played by the tenant (landlord) is
stored. However, since the library has a imited capacity of m units of informa-
tion another record of a play must leave the library.

The main difference of our model as compared with Young’s lies in the
definition of the state space. A state of the system in the model of Young is the
‘ordered sequence’ of the last m plays of the game. In our model, the demands
are not ordered according to the time they entered the libraries. Every time the
game is played a new element enters the library and the element it replaces is
chosen at random from those previously present. Such a change in the model
reduces considerably the state space. Our model has the advantadge of being
much more tractable than Young’s. The changes in the model simplifies the
analysis without doing any violence to the essentials of the process.

We are interested in characterizing the evolution of the information stored
in the libraries, since it determines the probability distribution of the future
behaviour in the two populations. The evolution of the information in the
libraries can be represented by a Markov chain defined on the state space Z. Let
Z, the set of all possible stocks in the library, be characterized as follows:

Z={{1 4, D, 2{1,251,...,23")”2{ € {0,1,2,...,m},sz =m}

where 2] is the number of times the strategy ¢ is recorded in the population

j’s library and n is the dimension of the strategy space (all possible announ-
cements). In order to characterize the evolution of the state of the system we
make the following assumptions:

Assumption 1. Every sample is drawn with the same positive probability.

Assumption 2. Every record of a past play leaves the library with the
same positive probability.

Assumption 3. With positive probability €, players make mistakes! by
playing a strategy chosen at random. When a mistake is made, all strate-
gies are possible. We will assume that all strategies occur with the same
probability ¢/n.

1Por sake of simplicity we assume that the probability of mistakes is the same in both
populations. The results do not change if different rates are assumed.



Assumplion 4. The probability densities for window sizes k and w are
f(k) and g(w) in populations I and II respectively. The probability that a
landlord uses sample size k is equal to f(k). The probability that a tenant
uses sample size @ is g(d).

We now define a convention. Consider the state in which z{_, = m and
2l = m. Whatever samples are drawn, the landlords will then demand z and
the tenants (1 — z). The states consisting of such a Pareto efficient division
of the crop are the ‘conventions’ of the system, i.e. the states that reproduce
themselves?. The main feature of such conventional behaviour is that any player
prefers to conform to it if everybody else does so. For notational convention we
will refer to the m-repetions of the same partition (z,1 — z) as c;.

Since our model differs from Young’s, it is neccesary to confirm the following
result. The proof i1s similar, although the current model allows a much less
restrictive constraint on the minimum necessary sample size. Young requires
that at least some players sample at most m/2 records in their libraries, whereas
the following proposition works with m/2 replaced by m — 1. ((m — 1) instead
of m/2).

Proposition 1 [f at least one agent in each population samples at most m-1
elements the system converges almost surely to a convention.

Proof. We need to prove that it is possible that the same sample will be drawn
for some time with the result that the same best reply until is made, until
we have built up homogeneous library records, one for each population, that
correspond to Pareto efficient divisions of the crop.

To this end, we consider the extreme case in which some players in each
population sample exactly m — 1 records, while the remainder may sample all
the records. Suppose that players from population I who sample (m—1) records
happen to be selected to play the game (m — 1) times and that they happen to
sample the same elements and so all play the same best reply z. This possibi-
lity occurs with positive probability, because the last element which enters the
library can leave it in the following period. We can obtain a state of population
I that contains (m — 1) copies of the same demand z. These (m — 1) elements
can remain for some time in the library of population II, and so be drawn by
the players from this population, who will, therefore, demand (1 — z). We the-
reby build a state of the system that contains (m — 1) copies of the observation
(1 — z) in the library of population I and (m — 1) copies of the observation z in
the library of population II. There is a positive probability that these are the
samples drawn next period and that the elements that are different leave the
corresponding library. We have reached a convention (cz) in (2rm — 1) periods

2The conventions have the property that they are the only absorbing sets of the model we
are considering.



with positive probability p. The probability that a convention is not reached in
s(2m — 1) periods is (1 —p)*, which goes to zero as s — 00 o

A convention can be abandoned only when some people start deviating from
the behaviour prescribed by it. This is why in our model we introduce the
possibility that people may make mistakes and play a strategy that is not a
best reply to the sample they have drawn.

To illustrate this point consider the 2 X 2 bargaining game of Figure 1:

LOW HIGH

b a
LOowW
b b
b 0
HIGH
a 0
a>b>0

Figure 1: Game 1.
The state space is:
Z = {(z1, )21, 2 €{0,1,2,...,m}}

where z; (z2) denotes the number of Low’s in the library to which players from
I (IT) have access.

This simple game has only two conventions: (m,0) and (0,m). Let us assume
that the established convention is (m,0) and that some tenents start making
mistakes. Sometimes they demand Low although the best reply to any sample
containing all Lows is High. The mistakes will, with positive probability, remain
for some time in the landlords’ library. It is possible that a landlord will draw
the mistakes and, if there are sufficiently many, he will, then, play a strategy
that is not the conventional one. If all players have the same utility function,
the probability that agents deviate from a convention in response to mistakes
made in the other population will depend on the size of the sample they draw.

The introduction of mistakes keeps the system continuously in motion. Un-
der assumptions (1)-(4) we can obtain a Markov Chain defined on the state
space Z with the transition matrix:

M(c) = M(;m, f(k),g(w), G) = lpi), (1 € z),



where the transition probability p; ; is the probability of moving from state 1to
state j in one period 3.

Introducing mistakes makes the Markov chain irreducible, i.e; all the states
intercomunicate. As the Markov chain is also aperiodic, it is therefore ergodic
and has a unique stationary distribution, i.e.,there exists a unique distribution
(1 x |Z]) vector pc such that:

#eM(f):#S (1)

thus, system settles down in the long run to a distribution which is in-
dependent of the initial conditions. The solution to (1) is a correspondence
T : ¢ = AlZI-1 which is upper hemicontinuous. The equilibrium selection is
continuous with respect to perturbations (see Kandori and Rob [5]).

The interpretation of the probabilities attached to each state in the long-run
distribution, is the time spent by the system in the corresponding state.

It turns out that this long-run distribution often put most of its mass at
just one of the possible conventions when the mutation rate is small. As the
mutation rate tends to zero, all other states are assigned zero mass. We then
say that the remaining convention has been selected in the long run. This
conclusion is no longer valid when the mutation rate is set to zero from the
outset. The convention that is then observed in the long-run depends on the
initial conditions. When players do not make mistakes, the conventions are
absorbing states, i.e. once the system is at a convention 1t is 1mpossible to
escape.

The trick in selecting a particular stationary distribution out of all possible
conventions is the introduction of a small amount of noise into the system. Out
of all the possible conventions we select one, by introducing noise in the system
and letting it tend to zero.

We follow Young in assigning a ‘resistance’ to each convention. The con-
vention that is selected is that from which it is most difficult to escape or,
seen from another perspective, the one which is easiest to reach from any other
convention. The computation of the ‘resistance’ associated to one particular
convention involves counting the minimum number of mutations needed to re-
ach such a convention from any other. As the mutation rate tends to zero only
those states which are easiest to reach will be observed in the long run.

The convention which has the smallest resistance is therefore the one from
which it is most difficult to escape. When we consider the possibility of going
from one convention to another we have only to consider the minimum number of
mistakes one of the libraries has to contain for ‘the most mistake-sensitive player’
to be capable of drawing a sample that prescribes a non-conventional choice.
When all players from the same population have the same utility function, the
most sensitive player is the person who draws the smallest sample.

3In what follows we will write M(e) instead of M(e;m, f(k),g(k),G). The game, the
memory size and the distributions of window sizes are fixed.



Proposition 2 (Young [9]) When the rate ¢ of mistakes goes to zero, the sta-
tionary distribution will put weight only on the convenlion or conventions with
minimal resistance .

The main result of Young’s study of the Nash Demand Game is the selection
of the asymmetric Nash bargaining solution as the long-run convention of the
system. There are two conditions that need to be satisfied. The level rate of
mistakes has to be positive but vanishingly small. Also a very finely meshed
stategy space has to be considered. That is to say

5=1{0,6,2636...,1-61}
where the mesh-size § > 0 must be taken to be sufficiently small.

Definition 1 (Asymmetric Nash Bargaining Solution) The Asymmetric
Nash Bargaining Solution s the division (z,1 — z) that mazimizes

{u(z)}*{v(1 = z)}* subject to 0 <z < 1

where u and v are the utility functions of players 1 and 2 respectively, and a
and b are their bargaining powers.

The following proposition, drawn from Young [10],’is tfue in our model:

Proposition 3 (Young [10]) The evolutionary process described above conver-
ges to the asymmetric Nash solution as § — 0, with each population’s bargaining
power equal to the smallest sample size used by an individual in that population.

Proof. Young’s proof also applies in our model. There is a correspondence
between the conventions in our model and those in Young’s. The proof of the
theorem depends on computing the number of mistakes needed to abandon one
convention in order to enter the basin of attraction of another convention and
the considering the limit as 6 — 0. a

The proposition above implies that determining the convention that will be
observed most of the time, requires focusing only on the evolution of
k = min{supp f(k)} and w = min{supp g(w)}, where f and g are the densi-
ties that describe the distribution of sample sizes in populations I and II (see
Assumption 4). The long run convention of the system is determined by the
members of the populations who draw the smallest sample. In the conventi-
ons, the payoffs obtained by members from the same population are the same
independently of the amount of information gathered.

The fact that people make mistakes implies that with positive probability
the system 1s not at a convention at any particular time. In such cases, the
expected payoff to different window sizes may differ. In order to compare the
profitability to different sample sizes, we need to obtained the expected payoffs
in each state as well as the long-run distribution of the system.



3 Long-run payoffs

We will assume that all players have the same utility function. This assumption
is necessary to rule out the influence of different levels of risk aversions in the
selection of the long run convention. The difference in the expected behaviour
of two players from the same population then depends only on how much infor-
mation they gather from their library (sample size) and not on their attitudes
towards risk.

Risk-aversion plays an important role in the models of Young [10} and Ru-
binstein [8]. In both models it is the player who is more risk averse who gets
the smallest share of the cake.

Players’ strategies. Players use best replies against random samples drawn
from their libraries. Before the sample is chosen, we can characterize the anti-
cipated behaviour of each player as a “mixed strategy”, with the probabilities
attached to each strategy being determined by the current stock of information
on record. It is important to notice that these are “mixed strategies” of a spe-
cial type. They are observed not because players randomize over pure strategies
but because they base their choice of strategy on the information provided by
a random sample drawn from their library. Each landlord (tenant) drawn to
play, faces a tenant (landlord) who behaves as if he were using a mixed strategy.
Notice that each player has some limited knowledge about the past behaviour
of the other population, but not about his own.

Consider Game 1 of Figure 1 and a landlord who draws a sample of size k.
The state of the system is z = (z;, z2) and the recorded history contains m past
plays of the game.

Let us define p}(z_;, z) as the probability with which player i plays strategy
s when the state of the system is z and he draws a sample of size z.

When the library contains m records, there are (T) possible samples of size
k. High will be the best reply when the sample drawn contains at least {;(k)

lows 4 R
(k) = [fk]
a

The probability with which a player from population 1, sampling k records,
plays high in state z is therefore

ten=(7) 2 ()00

4[]~ ([z]*) denotes the greatest (smallest) integer smaller or equal (greater or equal) than

X.

10



This probability is non-decreasing in z; and is zero for z; < I, and one for
29 >m—(k—1).

The strategy played by any member of population I (II) depends on the state
of the system in the other population, the payoffs (through {;) and on the size
of the sample.

Example Choose the payoffs a and b of Game 1 to obtain:

Low HIGH

1.2 3
Low
1.2 1.2
1.2 0
HIGH
3 0
Figure 2.

Assume that there are two types of landlord. When called upon to play, Type
1 samples only one past record; Type 2 samples three. All tenants sample 2 units
of information. Tables 2, 3 and 4 report the mixed strategy (the probability
of playing High) used by tenants, Type 1 and Type 2 landlords respectively.
Each entry corresponds to one state of the system. The horizontal dimension
is the state of the tenants, i.e. the number of times in landlords’ library that
a tenant played Low. The vertical dimension corresponds to the state of the
landlords. Both range from 0 to 8. The entry (6,3) in Table 1 says, for instance,
that a tenant will play High with probability 27/28 when the landlords’ library
records that tenants played Low 3 times and the tenants’ library record that
landlords played Low 6 times. The same entries in tables 2 and 3 represent
the probabilities assigned to High by landlords who sample 1 and 2 records
respectively.

11
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Notice that the strategy used by each population depends neither on its own
state (horizontal dimension for tenants and vertical for landlords), nor on the
distribution of types in the two populations. Notice also, comparing tables 3
and 4, that there are two subsets of states in which a pure strategy is played
and that these subsets grow with the size of the sample.

In the proposition which follows we formalize the intuition provided by the
previous example. We characterize the set of states in which players use a pure
strategy, when not making a mistakes.

Let us consider Game 1 and define the following subsets of Z:

Z.,={{21,22)l21 < 2,22 <y}

—Z_Iuy = {(zl:ZZ)lzl 2 I, 2y Z y}

14



Consider a landlord who samples k elements, with [ which are Low’s. Low
will be the best reply to that sample if | < kb/a. All possible samples drawn
from:

kb]™
Zmey- = {(21,22)|l21 Smy 2 < [;] }

will have at most [kb/a]~ lows and every landlord who samples k elements will
play Low with probability one.

High will be played with probability one by any landlord with a sample of
size k in all the states in 70,[m_k(a_b)/a]+ . In any other state 1t is possible to
find samples of size k to which Low is the best reply as well as samples of equal
size to which High is the best reply.

We are interested in identifying the sets of states in which only pure strategies
are played.

Consider the following correspondence s' : R? = 7,

Si(m::’:) = {(21122” pf(z_,',:c) = 1}

Note that L(m, k) = Z,, xe)- and H'(m, k) = Zo (m—k(ab)/a)*-

Proposition 4 L'(m, Ak) C L'(m, k) and H(m, k) C H'(m, k) for
0< A< 1.

Proof. It follows from the definitions of L! and H'.

Proposition 4 states that the set of states in which pure strategies are played
shrinks with the sample size.

This result can be easily extended to the case in which there are more than
two strategies. Under the assumption of homogeneous utility functions the
different sample sizes need the same ‘proportion of mistakes’ to start playing a
nonconventional strategy.

Player’s payoffs. In order to compare the profitabilities to different sam-
ple sizes we need to obtain the payoffs in each state as well as the long-run
distribution p..

Different sample sizes will have the same expected payoffs in all those states
in which the mixed strategies are the same. From the preceding proposition, we
know that in some states different sample sizes prescribe the same pure strategy.
Clearly, in all such states, players using different amounts of information will
have the same expected payoff, independently of the opponent’s strategy. In
all other states different sample sizes prescribe different mixed strategies and,
therefore, will have different expected payoffs.

The profitability of a learning rule (characterized by its sample size) depends
not only on the rate of mistakes but also on the composition of the populations
which determines the actual long-run distribution. Let 7*(¢; z, g(w)) be the
expected (gross) payoff in state z to a player who samples & units of information
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when the rate of mistakes is ¢. We can decompose this expected payoff into two
components:

(€ 2, 9(w)) = (1 — )mi(e; 2, g(w)) + em'(e; 2, g(w)) (2)

The first part of the payoff, ni(e; z, g(w)), is received when the player uses
the information provided by the sample he has drawn. Players do not tremble,
and therefore use the information available to them with probability (1—¢). The
second component, 7(¢; z, g(w)), is the payoff obtained when the player trem-
bles and plays an arbitrary strategy. This component which does not depend
on the sample size is the same for all members from the same population.

Let c(k) > 0 be the cost of a sample of size k. We obtain the net payoffs by
substracting c(k) > 0 from the right-hand side of equation (2).

The {gross) expected payoff to a player who uses a sample of size k& when
the long-run distribution of the system is u. is given by:

(s f(k), g(w)) = ) mr(e; 2, g(w))me(z)
2€2

where p(z) is the weight of the state z in the long-run distribution ..

We are interested in pairwise comparisons of sample sizes. In accounting for
differences in window sizes, we shall consider first the simplest case.

Consider Game 1. Assume that all tenants are characterized by the same
sample size w. Consider two different samples & and &’ < k in the population
of landlords.

Proposition 5 Let us consider sample sizes k and k' < k. For m large enough
there ezist integers q1, g2 and ¢ > gy such that

YVzeZ

“£m,qe UZ;,,O mi(e; 2, w) > (€ 2, w)
Vi€Zym UEO,q; (€ 2, w) > (€ 2, w)

Proof. Let g; as the smallest z; such that pf(z,w) > b/a, and let gz and ¢}
be the states such that,

for all 2z < g2 pi (20, k) < pH(22,k") and

forall zo > g2 py (22, k) > p{ (22, k')

The following figure is a graphical illustration of the previous proposition.
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The state of population II is represented in the horizontal dimension. It
ranks from 0 to m and represents the number of Low’s in the recorded memory.
Similarly, the state of population I is represented in the vertical dimension, from
up to down. The conventions are in lower-left and the upper-right corners (filled
dots).

Let us consider the area labelled with £ - k' on the upper-right part of the
figure, which are states in some neighbourhood of (0,m). The history available
to the tenants has many High’s. Tenants will play Low with high probability.
The best reply to p < b/ais High. A player using a large sample will play High
with higher probability than a player with a smaller sample. A similar argument
applies to the states in the lower-left corner. The dashed areas correspond to
the states in which landlors, either with k or k', play the same (pure) strategy
and, therefore, have the same expected payoff. The smallest sample pays better
in the sets labeled with k' > k.

4 The evolution of the learning rule.

The aim of this section is to endogenize the amount of information gathered by
players. People can observe the payoffs of some members of their own population
and imitate the most successful behaviour. Students may know how much other
students are paying and how much they searched. We will assume that together
with the average payoffs, players can observe the sample sizes drawn by other
members from the same population.

Comparison of payoffs. We will assume that the comparison of payoffs takes
place relative to the long-run distribution and so does the evolution of sample
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sizes. We can justify this assumption on the grounds that the adjustment pe-
riods are negligible compared with the time the system spends in the long-run
distribution.

When comparing the payoffs to two different sample sizes from the same
population, we have only to consider the first part in equation (2).

The difference in payoffs to window sizes k and k', evaluated relative to the
long-run distribution is given by

Dr(e; k, k', f(k), g(w)) = (1 = ) 3 (mh(6 2, 9(w)) = mio(&5 2, 9(w))pe(2))

z€Z

The function D is a polynomial in € and it 1s therefore continuous.

Consider the simplest possible case. There are two types of landlords, in
proportions ¢ and (1 — ). The first type samples k records the second type
sample k’. All tenants are of the same type, and sample w past records. The
rate of mistakes is the same in both populations.

Let M(ry,rr) be the transition matrix when population I (IT) follows rule
rr (r17) to play the game. The rule can be either to take a sample (k, k' or w)
or to tremble (). We can decompose the Markov matrix M(¢; 0k + (1 —0)k', w)
as follows:

M (¢; 0k + (1 - Ok, w)y = 0((1- )X (M (k,w)+ (11— €)eM(k,t))
(1—0)((1 — ) (M(K',w) + (1 = e)eM(k',1))
EM(t, 1)+ (1 - €)eM(t, w)

Each time the game is played, a player sampling k is drawn with probability
0. With probabiliy (1 — ¢)? neither he nor the opponent, who samples w with
probability 1, tremble. The transition matrix is given in this case by M (k, w).
With probability € both players tremble; M(t,t) describe the transition pro-
babilities. With probability €(1 — ¢) only one player trembles. The markov
matrices when only the first or only the second player tremble are M(t,w) and
M (k,t) respectively. The terms multiplied by (1 — @) have an analogous inter-
pretation, with k' being the sample size used by the player drawn from the first
population.

When ¢ =0,

M(0; 0k + (1 = O)k', w) = OM (k, w) + (1 = O)M (K, w)

and the system has as many absobing states as there are Pareto-efficient divi-
sions of the cake. Once a convention has been reached, and it will happen with
positive probability, the economy will remain there for ever. The set of absor-
bing states is independent of the composition of the populations. Independently
of the value of 8, the conventions are the only states with 1 on the diagonal of
M(0,). Changes in ¢ only affect the transition probabilities but do not change
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the absorbing states. From any other state, it is possible to find a chain of
transitions which ends up in one convention. The convention which will be se-
lected depends on the initial conditions. In other words, history matters. In a
convention, all players obtain the same payoff and, therefore Dn(0;k, k') = 0.
The information given by a single unit of information is as good as the whole
history.

When ¢ = 1,

M(1;0k+(1—G)k',w):ezM(t,t) (3)
The long-run distribution depends neither on the composition of the population
nor on the sample sizes. Players play an arbitrary strategy. The expected payoft
is the same for all players and Dw(1;k,k') = 0.

When 0 < ¢ < 1, there are no absorbing states. The diagonal elements
of M(e;0k 4+ (1 — 0)k’,w) are all smaller than 1. The long-run distribution
will depend on the specific way trembles are modeled and on the sampling
process which is assumed. We shall assume that the probability of sampling an
individual with sample size k is equal to its proportion in the population. The
trembles have been modeled as the choice of any of the possible strategies with
equal probability.

As the noise tends to zero, the long-run distribution concentrates around
the convention whose basin of attraction is hardest to escape. If the noise is
vanishingly small we can easily characterize the long-run distribution and the
long-run payoffs. For very small noise rates, the system will be almost always in
a convention, although all other states will be visited with positive probability.
The closer the states are to the conventions, the higher will be their weights in
the long-run distribution. For very small mistake rates we need to consider only
states in neighbourhoods of the conventions to compare expected payoffs. In
those states, as we have seen in the previous section, larger sample sizes have a
higher expected payoff, due to the fact that, close to the conventions, it responds
with smaller probability to the mistakes coming from the other population.

Proposition 6 Let us consider two sample sizes k and k' < k. For 0 <e< ¢
and large m, Dm(¢; k, k") > 0.

Proof. See Appendix 1. We prove that for arbitrarily small positive €, the
payoffs in the states where the larger window size pays best compensate the
disadvantadge in all other states.

In Appendix 2, we report the results of a simulation of Game 1 with m = 4
and different values of €. Each entry is the probability attached to the corre-
sponding state in the long-run distribution. We report the weight (p) of the
conventions and the six neighbouring states (three for each convention) in the
long-run distribution.

The larger the noise, the smaller the probability p. As the level of noise
. grows p decreases and the probability mass shifts towards states in which the
smallest sample performs relatively better.
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We can conclude that D is 0 at ¢ = 1 and ¢ = 0 and growing at this last
point.

The expected payoff to the different sample sizes depends on the mass put by
the long-run distribution on all the states of the system. As the rate of mistakes
¢ grows the probability weight moves from the conventions to the other states.
The set of states in which the smallest sample size has higher expected payoff
depends on the payoffs, the sample sizes and the memory length. It is possible to
find examples for which the largest sample is the most profitable for all levels of
noise. There exists, also, the possibility that at high levels of noise, the smallest
sample has a higher expected payoff. The states in which miscoordination is
common are more likely when the noise is large. The smallest sample may be
better as we shall see in the following numerical example.

An example Consider the game considered in the previous section. All ten-
ants draw a sample of size 2. There are, as before, two types of tenants 5 Type
1 tenants draw a sample of size k = 3. Type 2 sample &’ = 1 units of informa-
tion. The proportion of members from the landlords’ population who sample
k = 3 is given by 0. The columns report, respectively, the level of noise of the
system and the difference in payoffs (Dw(e; 3, 1) for the different levels of noise,
in the long-run distribution.

€ =0 =05 =1

0 0 0 0
0.05 | 0.024999 0.025198 0.02521
0.1 | 0.039749 0.04082 0.041329
0.2 | 0.048659 0.049013 0.050820
0.3 | 0.036386 0.039811 0.042752
0.4 | 0.023438 0.026059 0.028503
0.5 | 0.012609 0.014197 0.015741
0.6 | 0.0053594 0.0061561 0.0069475
0.7 | 0.0014224 0.0017458 0.00207
0.8 | -0.00008059 | 0.00001237 0.00010585
0.9 | -0.00019779 | —0.00018624 | -0.00017463
0.95 | -0.000071602 | —0.000070145 | -0.000068685

1 0 0 0

Table 4 .

The last column shows the difference in expected payoffs when all members
of population I sample w = 3, evaluated relative to the long-run distribution.
For all noise rates smaller than 0.8, the larger window size pays better than the
smaller. Any mutant using a unit less of information will die out.

5We have selected k and k' in such a way that the structure represented in Figure 1 is
preserved.

20



The function D7 is defined for fixed f(k) and g(w). In the following section,
we introduce dynamics in the distributions of sample sizes. As the proportion
of players using different sample sizes change so does D.

5 Evolutionary stability.

We can only make qualitative statements about the relation between costs, noise
and evolution of learning rules in the system. It is important to realize that all
the results of Young [9], Kandori et al. [4] and Young [10] are valid when
the level of noise is close to zero. Only in this special case in which can we
characterize the long-run distribution of the system.

In this section we characterize the evolutionarily stable sample sizes. The
idea is to perturb the distributions of sample sizes by introducing new people
with different learning rules. Stable distribution are those that survive such a
disturbance. The dynamics in the compositions of the populations will be driven
by some type of imitation or Darwinian selection (the survival of the fittest). It
is important to notice that we have two different levels of evolution. On the one
hand we have the evolution of the system, as in Young [10], which is driven by
the adaptive play and the mistakes. On the other hand we have the evolution
of the learning rules which is driven by the imitation of more profitable learning
rules and by mutations which affect the sizes of the sample. We do not take the
distributions of sample sizes as given. We can consider two different relevant
time horizons. In the long run we take the distributions of sample sizes, f and
g, as given with the system being in the long run distribution. We can think of
a situation in which people adjust very slowly their learning rules compare to
adjustments in the environment. In the ultra long run players have had time
to adjust their learning rules. Our aim is to find two sample sizes k* and k*
which are evolutionarily stable, i.e, cannot be invaded. In the ultra long run,
the distributions f and ¢ will put weight only on k* and w* respectively. As we
have seen in the previous section, there is always a sample size which dominates
the others, i.e has a higher expected payoff. Under darwinian dynamics the
populations will be invaded by such a sample. Selection implies, in this case,
homogeneous populations.

We will compare the results with an hypothetical situation in which sample
sizes are selected at the population level. For this purpose we will asume that
players, in each population separately, elect a representative to play the game
on their behalf. The representative is characterized by the size of the sample he
draws. Both populations behave this way, knowing the long-run implications of
their choices.
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5.1 Asymptotic results.

The asymptotic results apply in the case when the noise is very small. We can
focus on the behaviour of k and w, which are the sample sizes which determine
the bargaining powers and the long-run distribution (Proposition 2).

The distributions of sample sizes, f(k) and g(w), may change over time.
When different sample sizes are present in the same population, there will be
a process of selection that will wipe out inefficient learning rules. Only when
these changes affect either k£ or w will the system move to a new convention.

5.1.1 Costless window sizes

From the previous section, we know that when information is free, and the noise
tends to zero, big samples have higher expected payoff than small ones, although
the advantage of sampling vanishes with the noise.

Proposition 7 . When players can change their sample sizes without cost, the
only evolutionarily stable sample sizes are k and w.

Proof. Let us assume that all members in population 1 (2) are sampling k£ < k
(w < W) and that sampling is costless. These sample sizes are not evolutionarily
stable. By proposition 6 any mutant who enters the population and samples
more will have a higher expected payoff. 0

When sampling is costless we will observe an endless process of growth in the
samples. If there is a limit in peoples’ capacity to retain information, there will
be full employment of this capacity, which will be the only uninvadable sample
size, with the population gifted with higher capacity receiving a greater share.

Nash equilibrium in sample sizes. In the analysis developed in the
previous section, players do not have any concious choice of strategies. They
simply apply the simple rule of playing a best reply to some observation about
the past and sometimes imitate more succesful learning rules. We have assumed
very little about players’ information. Players only know some limited informa-
tion about previous demand and payoffs and window sizes of players from the
same population. In what follows we compare the results obtained above with
those obtained in the extreme case of perfect forsight. We shall assume that
players are committed to play as before, but they are able to computing the
long run distribution and know that with their choice of sample size can affect
the convention which will be selected. The situation can be modeled as a one-
shot game, with sample sizes as strategies and payoffs computed in the long-run
conventions.

We consider the following thought experiment: Imagine that landlords and
tenants have to elect a representative (a type) to play the Nash Demand Game
on behalf of the population. The rules of the game are as before, with the
difference that the player is not randomly selected but chosen by the population.
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The representative decides how to play by sampling the number of records that
characterize his type. Players are aware that their joint choices will determine
the bargaining powers and their shares of the crop in the long-run. They only
care about long-run payoffs. Which sample size will they choose? They will
select a player with a sample size that maximizes their payoffs given the other
population’s choice of sample size.

The strategies spaces,

St ={1,2,3,..k}
5% ={1,2,3,..,w}

are all the possible sample sizes. The capacity limits, ¥ and W, are not necessarily
the same.

Let us consider the simplest case in which the utility functions are linear.
" The asymmetric Nash bargaining solution, with bargaining powers are k and w,
is the partition (z",1 — z*) which solves,

maxz*(1 — z)¥
T
The solution 1s L
w+k
Landlords and tenants have to elect a representative to play Game 2. Each

entry correspond to the (asymmetric) Nash bargaining solution (z*,1—=2z") for
the different sample sizes.

*

i 2| 3] | =
1], 2|, 3. L FlL 8
2 3 4 4 5

i 1] 3| 4| =
202 32 {2 ®fz ®lz 7
3 4 5 6 7

2| 1| 4| =
31 4| S| %s 7|z ®
4 5 2 7 8
T z| 3] 1| =
404 5|a Sla "L |2 °
5 6 7 2 9

Figure 4. Game 2.

23



The entries on the diagonal correspond to the symmetric Nash bargaining
solution, the fifty-fifty division, because both populations have the chosen the
same sample size and therefore have the same bargaining powers. The optimal
choice for each population, given the other’s sample size, is to elect a player
who samples the most he can. In the unique Nash equilibrium of this game,
the two populations select a player with the largest possible sample size. If the
strategy spaces, S' and S?, are the same for both populations, we will observe
the fifty-fifty division and people sampling at the limit of their capacity. Notice
that the Nash equilibrium corresponds to the evolutionarily stable sample size.
It is interesting the fact that the observed behaviour is the same with myopic
imitative players and with fully rational players. Evolution leads to the same
result that concious rational choice.

5.1.2 Costly sample sizes.

We now study the more realistic setting in which sampling is costly. We assume
that the cost of a sample is proportional to its size; all members of the same
population have the same marginal cost, ¢; for landlords and c; for tenants.

Proposition 8 . When sampling is costly, the only evolutionarily stable sample
sizes are k = w = 1. Furthermore, if players have the same utility fuction, the
long-run convention will be the fifty-fifty division.

Proof. When small samples are less costly a reduction in the sample size
implies a saving in the cost while the worsening in the performance is negligible:

lime.oDn(e; k,1)=0 Vi>1

lime(k) —¢(1) >0 Vk>1

e
The only uninvadable sample size is 1. This result is independent of the
relative costs and of the shape of the cost function. In the particular case of
homogeneous utility functions the fifty-fifty division will be the rule and decision
costs will be minimized.
The results differ from the situation in which representative player is chosen
by the populations.

Nash equilibrium in sample sizes Landlords and tenants choose sample
sizes k* and w* which maximize they long-run payoffs, taking the rival’s sample
sizes as given,

The Nash equilibrium of the following one shot game is selected,
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1
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1 3 5
—3--—(:3 5—262 5—362 —-—462 7—5(32
2
2 2 2 2 2
—3-—2c1 £ —=2¢ g—2c1 §—2c1 £~ 2¢
1 1
i—C2 £ — 2¢ 5 — 3cy % —4cy g — 9¢c2
3
3 3 1 3 3
Z—3Cl g——361 5—'361 ':7'—361 —8-—361
1 2 3 1 5
5—62 '6'-'2C2 7-3C2 5—462 5’562
4
4 4 4 1 4
5—461 5—461 7—-461 7—401 §~‘4Cl

Figure 5. Game 3.

Game 3 is obtained from Game 2 by simply substracting the sampling costs
which are proportional to the window sizes.
The unique Nash equilibrium of Game 3 is given by,

. _ c2
T (1 +c2)?
. _ 1
B (c1 + ¢2)?
The bargaining powers are inversely related to the relative costs:
k* Co
v o

When the marginal costs are the same, ¢; = ca, we will observe the fifty-
fifty division. In this case there is social inefficiency because players incurr in a
- costs of sampling which are saved in the case in which players follow the very
simple imitative behaviour we have assumed. We have an evolutionarily stable
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sample size (k = w = 1) which is not a Nash equilibrium of the game in samples
sizes. The reason is that players, when changing their sample sizes, do not take
into account neither the effect of their action in the long-run nor any strategic
consideration. Both populations could be better-off if they agreed on sampling
only one unit of information. In this case they would save the sampling costs
getting half of the cake. Both parts have incentives to deviate from such an
agreement. It is prissoner’s dilemma situation.

An economy populated by myopic players is more efficient that one in which
strategic considerations are taken into account and intra-population coordina-
tion is possible.

When the marginal costs are different the two populations get different
shares, the higher one being received by those which have the smallest mar-
ginal cost.

5.2 Non asymptotic results.

In section 3 we have obtained a relation between rates of noise and differences
in expected payoffs to two different sample sizes. If sample sizes are costly, the
same relation defines a locus of noise rates and differential costs which makes
players indifferent between two different windows.

Let c(k) (¢/(k) > 0) be the cost of keeping a window of size k > 0. For each
¢ and two given sample sizes k and k' < k we can find a function d(e, k, k'), such
that

if c(k)—c(k') =d(e;k, k') then =(e;k)—c(k)=m(e, z;k") = c(k)

Clearly, d(e; k, k') = Dn(e; k, k).

The analysis of the evolution of learning rules for non-negligible rates of noise
requieres the study of the evolution of the whole D function. The asymptotic
results do not hold. For any difference in sampling costs we can find rates of
noise for which small sample sizes are more profitable, as well as other noise
rates for which the largest sample is prefered. The characterization of the evo-
lutionarily stable sample sizes requires a better understanding of how changes
in the proportions of sample sizes in the populations shift the D function.

Consider Figure 2. The shape of D corresponds to the example reported
in Table 4. Let us assume thet the rate of noise is ¢ = ¢ and the difference in
sampling costs c(k) — c(k') = d
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D=(e)

Figure 6.

the largest sample size k has, at ¢, higher expected payoff
m(& k) — c(k) > w(€, z; k') — c(k)

The proportion of player using k will grow (change in § and f). If the change
in the distribution of sample sizes f moves Dm upwards, the system will end up
with an homogeneous population of k-players. Instead, if D7 moves downwards
it may happen that the process of growth of k-users stops. This will occur if the
new D falls below d at ¢. In this last case we could have, in the ultra long-run,
people in the same population using different window sizes.

The following table reports the difference in payoffs for the simulation des-
cribed in section 3 but keepeng fixed the noise rate at ¢ = 0.8. The proportion
of players sampling k = 3 and k' = 1 are 6 and (1 —0) respectively. All members
from population II sample w = 2. The memory is m = 4. As 0 increases ( the
proportion of k-strategist grows) the long run distribution put more weight on
those states where the larger sample size has higher expected payofi.
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6 [ Dn(0.8;3,1)
0 | -0.00008059
0.05 | -0.000071324
0.1 | -0.000062045
0.2 | -0.00004347
0.3 | -0.000024876
0.4 | —6.2611076

0.5 | 0.00001237
0.6 | 0.00003102
0.7 | 0.00004970

0.8 | 0.0000684

0.9 | 0.000087115

0.95 | 0.000096481
1 | 0.00010585

Table 5.

The population will evolve, depending on the initial value of §, towards 6§ = 1
(everybody sampling k) or towards a 6 = 0 (everybody sampling £'). For small
initial proportions of k’-players the smallest sample size performs better and will
invade the population. The opposite is true for high enough 6's. No general
statement can be done about evolutionary stability for non-negligible rates of
noise. The ultra long run distributions will depend on the initial distribution of
sample sizes, the sampling costs and the rate of noise.

6 Conclusions

In this chapter we have developed an evolutionary model of bargaining with
endogenous bargaining powers. In the model there are two levels of evolution
and noise. On the one hand there is the evolution of the state of the system which
is driven by the adaptive play and the trembles affecting players’ demands. On
the other hand there is the evolution of the distribution of window sizes which is
continuously perturbed by mutants who employ different learning rules. When
the second level of evolution is absent our model is observationally equivalent
to Young’s. In this case the model predicts the negative externality exerted
by poorly informed players on the whole population. This result, which is
obtained under the assumption of fixed samples sizes, leaves unexplained the
main determinant of the bargaining powers. The model does not explain either
the co-existence of different behaviours in the populations. By allowing players
to imitate more succesful behaviours we endogenize the bargaining powers. We
show that there will be a tendency towards homogeneous populations. All
members from the same populations will, in the ultra-long run, receive the same
share. It will happen not because there is a marginal player who determines the
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share received by everybody but because all players behave the same way. When
sampling is costless both populations tend to be informed as much as they can.
If there are no differences in the informational capacities of the two populations
the process converges to the symmetric Nash bargaining solution. The same is
true when sampling is costly, though in this case both populations sample only
one unit of information. Any asymmetry in the populations’ sampling costs are
not reflected in the shares received. When we compare the results with those
obtained with populations of rational players we observe that the economy of
myopic imitative players is more efficient. The main problem with the model
is that all the results are obtained in the limiting case of very small rates of
mistakes. More interesting situations are those in which the rate of mistakes
are not necessarily small. In this case the symptotic results do not hold and
we cannot characterize the long run distributions. Some simulations seem to
- suggest that a closer study of the relation between the rate of mistakes and
the sampling costs is needed in order to characterize the evolutionarily stable
learning rules.
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7 Appendix 1
Let pgf;; be the transition probability between state (¢,7) and (k,!). Let us

consider a memory size m and a state (m, ) and consider thet all players sample
1 unit of information.

pEZ‘B = a(m, 7)6(m, j)

i) = B(m, j — 1)é(m, j = 1)

Pom D1y = 7(m, j +1)8(m, j +1)

pomd) 5y = a(m—1,5)¢(m - 1,j)

o) i1y =Bm =1, = 1)g(m — 1,5~ 1)

) oy = 7(m = 1,5+ Dg(m = 1,5 +1)

where

alij)= (1—e(Ptl  Lmody, ¢

E
m m m 2

m
m—im-—j3 m-—je

A(,5) = (1-¢

m m m 2

AN I 4
74 =( 6)mm + m?2

o m—ji jm—i_ ¢
6(3,5) = (1 = e)( - E+E ™ )+§

N am— jm—1 m-— if
¢(i,j)=(1-c) m m + m 2
Let it = p(e, m) be the long run distribution.
— (m.j) (mj)
Bomj) = H(mi)Pimg) + Hmi-0)Pim g1y +

(m,j (m,7)
ﬂ(m.j+l)P(m,j‘l1) + Bm-15)PmZ1 5yt
J J)
/*"(m—l,j—l)pE:i)l'j_l) + ”(m—l,j-&-l)pEZil’j_H)

Let “E?.j) = limm oo #(5,5)
€ m €
“‘?rln,m) = ﬂzrrln,m)(g)2 + #(m,m—l)(a)2
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lim(__.o - 0
'u(m,m—l)
Solving recursively, we obtain
Him,j
lime—o—"1l = 0
F(m,j-1)

We can always find an € such that for all ¢ < ¢, the larger window always

pays best.
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8 Appendix 2

0 1 2 3 4
3.8107% | 0.0000446 | 0.000187 | 0.000821 | 0.00466
0.000186 | 0.000706 | 0.000908 | 0.000697 | 0.000331
0.00532 | 0.00535 | 0.00171 | 0.000285 | 0.0000213

0.1 0.0247 | 0.00198 | 0.00008 | 1.24107°

0.785 0.0656 | 0.00171 | 0.0000151 | 3.171078
Table 6. ¢ = 0.05, p = 0.98149
0 1 2 3 4
0.0000186 | 0.000184 | 0.000749 | 0.00265 | 0.00745
0.000791 | 0.0026 | 0.00344 | 0.00258 | 0.00111

0.0156 0.016 | 0.00635 | 0.00122 | 0.000105

0.158 0.0565 | 0.0073 | 0.000421 | 8.4310°°

0.607 0.104 | 0.00561 | 0.000102 | 4.2810~7

|

Table 7. ¢ = 0.1, p = 0.939487
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0 1 2 3 4
0.000109 | 0.000856 | 0.00317 | 0.00801 0.011
0.00327 | 0.00998 | 0.0136 | 0.00987 0.00362
0.0371 0.0464 0.0239 | 0.00576 | 0.000599
0.19 0.113 0.0247 | 0.00233 | 0.0000758
0.35 0.128 0.0148 | 0.000597 | 6.15107°
Table 8. € = 0.2, p = 0.81265
0 1 2 3 4
0.000299 | 0.00207 | 0.00684 | 0.0134 0.012
0.00654 | 0.0204 | 0.0285 | 0.0201 0.00654
0.0503 0.0768 | 0.0479 | 0.0138 0.00165
0.166 0.142 0.0445 | 0.00596 | 0.000284
0.196 0.114 0.0215 | 0.00146 | 0.0000286

Table 9. ¢ = 0.3, p =0.671295
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0 1 2 3 4
0.000583 | 0.0037 | 0.0109 | 0.0172 | 0.0114
0.00961 | 0.0313 | 0.0445 | 0.0308 | 0.00916
0.0543 | 0.099 | 0.0724 | 0.0242 | 0.00326
0.129 | 0.148 | 0.0614 | 0.011 | 0.000716
0.109 | 0.0909 | 0.0248 | 0.00256 | 0.0000835
Table 10. € = 0.4, p = 0.545698
0 1 2 3 4
0.000945 | 0.00558 | 0.0147 | 0.0194 | 0.0101
0.012 | 0.0411 | 0.0594 | 0.0405 | 0.0113
0.0522 | 0.112 | 0.094 | 0.0358 | 0.00539
0.0948 | 0.139 | 0.074 | 0.017 | 0.00146
0.061 | 0.0686 | 0.0258 | 0.00382 | 0.000193

Table 11. ¢ = 0.5, p = 0.444821
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0 1 2 3 4
0.00137 | 0.0076 | 0.0179 | 0.0201 | 0.00861
0.0137 | 0.0491 | 0.0718 { 0.0485 | 0.0128
0.0471 | 0.117 | 0.111 0.048 | 0.00799
0.0677 | 0.124 | 0.0826 | 0.024 | 0.00263
0.0345 | 0.0508 | 0.0256 | 0.00526 | 0.00039

Table 12. ¢ = 0.6, p = 0.367024
0 1 2 3 4
0.00187 | 0.00966 | 0.0203 | 0.0198 | 0.00719
0.0148 | 0.0552 | 0.0815 | 0.0547 0.014
0.0409 0.116 0.125 | 0.0601 | 0.0111
0.0476 0.107 | 0.0881 | 0.0319 | 0.00437
0.0198 | 0.0374 | 0.0249 | 0.00698 | 0.00073

Table 13. ¢ = 0.7, p = 0.307522
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0 1 2 3 4

0.00245 { 0.0117 | 0.0221 | 0.0188 | 0.00592

0.0154 | 0.0594 | 0.0884 | 0.059 0.0148

0.0346 | 0.111 | 0.134 | 0.0719 | 0.0146

0.0332 | 0.0907 | 0.0914 | 0.0408 | 0.00689

0.0115 | 0.0277 | 0.0241 | 0.00912 | 0.0013

Table 14. ¢ = 0.8, p = 0.261521

0 1 2 3 4

0.00312 | 0.0137 | 0.0231 | 0.0173 | 0.00483

0.0157 | 0.0618 | 0.0924 | 0.0616 | 0.0153

0.0287 | 0.103 | 0.139 | 0.0832 | 0.0187

0.0229 | 0.0757 | 0.0932 | 0.0509 | 0.0105

0.00668 | 0.0207 | 0.0236 | 0.0119 | 0.00227

Table 15. ¢ = 0.9, p = 0.225114
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0 1 2 3 4

0| 0.0035 | 0.0147 | 0.0234 | 0.0165 | 0.00435

14 0.0157 | 0.0623 { 0.0934 | 0.0622 | 0.0155

21 0.026 |0.0986 ¢ 0.14 | 0.0886 | 0.021

3| 0.0189 | 0.0689 | 0.0936 | 0.0565 | 0.0128

4 0.00511 | 0.018 | 0.0235 | 0.0136 | 0.00298

Table 16. ¢ = 0.95, p = 0.209543

0 1 2 3 4

0 | 0.00391 | 0.0156 | 0.0234 | 0.0156 | 0.00391

1| 0.0156 | 0.0625 | 0.0938 | 0.0625 | 0.0156

2| 0.0234 | 0.0938 | 0.141 | 0.0938 | 0.0234

31 0.0156 | 0.0625 { 0.0938 | 0.0625 | 0.0136

4 | 0.00391 | 0.0156 | 0.0234 | 0.0156 | 0.00391

Table i7. e =1, p = 0.195312

References

[1] K. Binmore. Nash bargaining and incomplete information. In The Econo-
mics of Bargaining. Basil Blackwell, Oxford, 1987.

37



[2] K. Binmore. Nash bargaining theory 11. In The Economics of Bargaining.
Basil Blackwell, Oxford, 1987.

[3] K. Binmore. Perfect equilibria in bargaining models. In The Economics of
Bargaining. Basil Blackwell, Oxford, 1987.

[4] M. Kandori, G. Mailath, and R. Rob. Learning, mutation and long run
equilibria in games. Econometrica, 61 (1):29-56, 1993.

[5] M. Kandori and R. Rob. Evolution of equilibria in the long run: A general
theory and applications. Working Paper, University of Pennsylvania, 1992.

{6] 3. Nash. The bargaining problem. Econometrica, 18:155-162, 1950.
(7] 3. Nash. Two-person cooperative games. Econometrica, 21:128-140, 1953.

[8] A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica,
50:97-109, 1982.

[9] P. Young. The evolution of conventions. Econometrica, 61 (1):57-84, 1993.

(10] P Young. An evolutionary model of bargaining. Journal of Economic
Theory, 59:145-168, 1993.

38



10.

RECENT WORKING PAPERS

Albert Marcet and Ramon Marimon
Communication, Commitment and Growth. (June 1991)
[Published in Journal of Economic Theory Vol. 58, no. 2, (December 1992)]

Antoni Bosch

Economies of Scale, Location, Age and Sex Discrimination in Household
Demand. (June 1991)

[Published in European Economic Review 35, (1991) 1589-1595]

Albert Satorra

Asymptotic Robust Inferences in the Analysis of Mean and Covariance Structures.
(June 1991)

[Published in Sociological Methodology (1992), pp. 249-278, P.V. Marsden Edt.
Basil Blackwell: Oxford & Cambridge, MA]

Javier Andrés and Jaume Garcia

Wage Determination in the Spanish Industry. (June 1991)

[Published as "Factores determinantes de los salarios: evidencia para la industria
espanola” in 1.J, Dolado et al. (eds.) La industria y el comportamiento de las
empresas espafiolas (Ensayos en homenaje a Gonzalo Mato}, Chapter 6, pp. 171-
196, Alianza Economia]

Albert Marcet
Solving Non-Linear Stochastic Models by Parameterizing Expectations: An
Application to Asset Pricing with Production. (July 1991)

Albert Marcet

Simulation Analysis of Dynamic Stochastic Models: Applications to Theory and
Estimation. (November 1991), 2d. version (March 1993)

[Published in Advances in Econometrics invited symposia of the Sixth World
Congress of the Econometric Society (Eds. JJ. Laffont i C.A. Sims). Cambridge
University Press (1994)]

Xavier Calsamiglia and Alan Kirman

A Unique Informationally Efficient and Decentralized Mechanism with Fair
Outcomes. (November 1991)

[Published in Econometrica, vol. 61, 5, pp. 1147- 1172(1993)]

Albert Satorra

The Variance Matrix of Sample Second-order Moments in Multivariate Linear
Relations. (January 1992)

[Published in Statistics & Probability Letters Vol. 15, no. 1, (1992), pp. 63-69]

Teresa Garcia-Mila and Therese J. McGuire

Industrial Mix as a Factor in the Growth and Variability of States’Economies.
(January 1992)

[Forthcoming in Regional Science and Urban Economics)

Walter Garcia-Fontes and Hugo Hopenhayn
Entry Restrictions and the Determination of Quality. (February 1992)



11.

12.

13.

14.

15.

16.

Guillem Lépez and Adam Robert Wagstaff
Indicadores de Eficiencia en el Sector Hospitalario. (March 1992)
[Published in Moneda y Crédito Vol. 196]

Daniel Serra and Charles ReVelle

The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part
I (April 1992)

[Published in Location Science, Vol. 1, no. 4 (1993)]

Daniel Serra and Charles ReVelle

The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part
II: Heuristic Solution Methods. (April 1992)

[Forthcoming in Location Science]

Juan Pablo Nicolini
Ruling out Speculative Hyperinflations: a Game Theoretic Approach. (April 1992)

Albert Marcet and Thomas J. Sargent

Speed of Convergence of Recursive Least Squares Learning with ARMA
Perceptions. (May 1992)

[Forthcoming in Learning and Rationality in Economics)

Albert Satorra

Multi-Sample Analysis of Moment-Structures: Asymptotic Validity of Inferences
Based on Second-Order Moments. (June 1992)

[Published in Sratistical Modelling and Latent Variables Elsevier, North
Holland. K.Haagen, D.J.Bartholomew and M. Deistler (eds.), pp. 283-298.]

Special issue  Vernon L. Smith

17.

18.

19.

20.

21.

Experimental Methods in Economics. (June 1992)

Albert Marcet and David A. Marshall
Convergence of Approximate Model Solutions to Rational Expectation Equilibria
Using the Method of Parameterized Expectations.

M. Antdnia Monés, Rafael Salas and Eva Ventura
Consumption, Real after Tax Interest Rates and Income Innovations. A Panel
Data Analysis. (December 1992)

Hugo A. Hopenhayn and Ingrid M. Werner
Information, Liquidity and Asset Trading in a Random Matching Game.
(February 1993)

Daniel Serra
The Coherent Covering Location Problem. (February 1993)
[Forthcoming in Papers in Regional Science]

Ramon Marimon, Stephen E. Spear and Shyam Sunder
Expectationally-driven Market Volatility: An Experimental Study. (March 1993)
[Forthcoming in Journal of Economic Theory)



22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Giorgia Giovannetti, Albert Marcet and Ramon Marimon

Growth, Capital Flows and Enforcement Constaints: The Case of Africa.
(March 1993)

[Published in European Economic Review 37, pp. 418-425 (1993)]

Ramon Marimon

Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in
Games. (March 1993)

[Published in European Economic Review 37 (1993)]

Ramon Marimon and Ellen McGrattan

On Adaptive Learning in Strategic Games. (March 1993)

[Forthcoming in A. Kirman and M. Salmon eds."Learning and Rationality in
Economics" Basil Blackwell]

Ramon Marimon and Shyam Sunder

Indeterminacy of Equilibria in a Hyperinflationary World: Experimental
Evidence. (March 1993)

[Forthcoming in Econometrical

Jaume Garcia and José M. Labeaga
A Cross-Section Model with Zeros: an Application to the Demand for
Tobacco. (March 1993)

Xavier Freixas
Short Term Credit Versus Account Receivable Financing. (March 1993)

Massimo Motta and George Norman

Does Economic Integration cause Foreign Direct Investment?
(March 1993)

[Published in Working Paper University of Edinburgh 1993:1]

Jeftrey Prisbrey

An Experimental Analysis of Two-Person Reciprocity Games.
(February 1993)

[Published in Social Science Working Paper 787 (November 1992)]

Hugo A. Hopenhayn and Maria E. Muniagurria
Policy Variability and Economic Growth. (February 1993)

Eva Ventura Colera

A Note on Measurement Error and Euler Equations: an Alternative to
Log-Linear Approximations. (March 1993)

[Published in Economics Letters, 45, pp. 305-308 (1994)]

Rafael Crespf i Cladera
Protecciones Anti-Opa y Concentracién de la Propiedad: el Poder de Voto.
(March 1993)

Hugo A. Hopenhayn
The Shakeout. (April 1993)



34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Walter Garcia-Fontes
Price Competition in Segmented Industries. (April 1993)

Albert Satorra i Brucart

On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in
Linear Latent-Variable Models. (February 1993)

[Published in Econometric Theory, 10, pp. 867-883]

Teresa Garcia-Mila, Therese J. McGuire and Robert H. Porter
The Effect of Public Capital in State-Level Production Functions Reconsidered.
(February 1993)

Ramon Marimon and Shyam Sunder
Expectations and Learning Under Alternative Monetary Regimes: an Experimental
Approach. (May 1993)

José M. Labeaga and Angel Ldpez
Tax Simulations for Spain with a Fiexible Demand System. (May 1993)

Daniel Serra and Charles ReVelle

Market Capture by Two Competitors: The Pre-Emptive Location Problem.
(May 1993)

[Forthcoming in Journal of Regional Science]

Xavier Cuadras-Moraté

Commodity Money in the Presence of Goods of Heterogenous Quality.
(July 1993)

[Published in Economic Theory 4 (1994)]

M. Antdnia Monés and Eva Ventura

Saving Decisions and Fiscal Incentives: A Spanish Panel Based Analysis.
(July 1993)

Wouter J. den Haan and Albert Marcet
Accuracy in Simulations. (September 1993)
[Published in Review of Economic Studies, (1994)]

Jordi Gali

Local Externalities, Convex Adjustment Costs and Sunspot Equilibria.
(September 1993)

[Forthcoming in Journal of Economic Theory)

Jordi Gali
Monopolistic Competition, Endogenous Markups, and Growth. (September 1993)
[Forthcoming in European Economic Review]

Jordi Galf

Monopolistic Competition, Business Cycles, and the Composition of Aggregate
Demand. (October 1993)

[Forthcoming in Journal of Economic Theory]



46.

47.

48.

49.

50.

51.

52.

53.

54.

5S.

56.

57.

S8.

59.

Oriol Amat

The Relationship between Tax Regulations and Financial Accounting: a
Comparison of Germany, Spain and the United Kingdom. (November 1993)
[Forthcoming in European Management Journal)

Diego Rodriguez and Dimitri Vayanos
Decentralization and the Management of Competition. (November 1993)

Diego Rodriguez and Thomas M. Stoker

A Regression Test of Semiparametric Index Model Speciication. (November
1993)

Oriol Amat and John Blake

Control of the Costs of Quality Management: a Review or Current Practice in
Spain. (November 1993)

Jeffrey E. Prisbrey
A Bounded Rationality, Evolutionary Model for Behavior in Two Person
Reciprocity Games. (November 1993)

Lisa Beth Tilis
Economic Applications of Genetic Algorithms as a Markov Process. (November
1993)

Angel Lépez
The Comand for Private Transport in Spain: A Microeconometric Approach.
(December 1993)

Angel Lopez
An Assessment of the Encuesta Continua de Presupuestos Familiares (1985-89)
as a Source of Information for Applied Reseach. (December 1993)

Antonio Cabrales
Stochastic Replicator Dynamics. (December 1993)

Antonio Cabrales and Takeo Hoshi
Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics.
(February 1993, Revised: June 1993)

Juan Pablo Nicolini
More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

Lisa B. Tilis
Income Distribution and Growth: A Re-examination. (December 1993)

José Maria Marfn Vigueras and Shinichi Suda
A Model of Financial Markets with Default and The Role of "Ex-ante” Redundant
Assets. (January 1994)

Angel de la Fuente and José Maria Marin Vigueras

Innovation, "Bank" Monitoring and Endogenous Financial Development. (January
1994)



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Jordi Gali
Expectations-Driven Spatial Fluctuations. (January 1994)

Josep M. Argilés
Survey on Commercial and Economic Collaboration Between Companies in the
EEC and Former Eastern Bloc Countries. (February 1994)

German Rojas
Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in
Effects and Stabilization Policy. (September 1993)

Irasema Alonso
Patterns of Exchange, Fiat Money, and the Welfare Costs of Inflation.
(September 1993)

Rohit Rahi
Adverse Selection and Security Design. (February 1994)

Jordi Galf and Fabrizio Zilibotti
Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

Jordi Galf and Richard Clarida

Sources of Real Exchage Rate Fluctuations: How Important are Nominal Shocks?.
(October 1993, Revised: January 1994)

[Forthcoming in Carnegie-Rochester Conference in Public Policy]

John Ireland
A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation
on Case Counts. (February 1994)

John Ireland
How Products’ Case Volumes Intluence Supermarket Shelf Space Allocations and
Profits. (February 1994)

Fabrizio Zilibotti
Foreign Investments, Enforcement Constraints and Human Capital Accumulation.
(February 1994)

Vladimir Marianov and Daniel Serra
Probabilistic Maximal Covering Location Models for Congested Systems. (March
1994)

Giorgia Giovannetti.
Import Pricing, Domestic Pricing and Market Structure. (August 1993, Revised:
January 1994)

Raffaela Giordano.
A Model of Inflation and Reputation with Wage Bargaining. (November 1992,
Revised March 1994)

Jaume Puig i Junoy.
Aspectos Macroecondmicos del Gasto Sanitario en el Proceso de Convergencia
Europea. (Enero 1994)



74.

75.

76.

1.

78.

79.
80.

81.

82,

83.

84.

8s.

86.
87.

88.

Daniel Serra, Samuel Ratick and Charles ReVelle.
The Maximum Capture Problem with Uncertainty (March 1994)

Oriol Amat, John Blake and Jack Dowds.
Issues in the Use of the Cash Flow Statement-Experience in some Other Countries
(March 1994)

Albert Marcet and David A. Marshall.
Solving Nonlinear Rational Expectations Models by Parameterized Expectations:
Convergence to Stationary Solutions (March 1994)

Xavier Sala-i-Martin.
Lecture Notes on Economic Growth (I): Introduction to the Literature and
Neoclassical Models (May 1994)

Xavier Sala-i-Martin.
Lecture Notes on Economic Growth (II): Five Prototype Models of Endogenous
Growth (May 1994)

Xavier Sala-i-Martin.
Cross-Sectional Regressions and the Empirics of Economic Growth (May 1994)

Xavier Cuadras-Moraté.
Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

Esther Martinez Garcfa.
Progresividad y Gastos Fiscales en la Imposicién Personal sobre la Renta (Mayo
1994)

Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin.
Capital Mobility in Neoclassical Models of Growth (May 1994)

Sergi Jiménez-Martin.
The Wage Setting Process in Spain. Is it Really only about Wages? (April 1993,
Revised: May 1994)

Robert J. Barro and Xavier Sala-i-Martin.
Quality Improvements in Models of Growth (June 1994)

Francesco Drudi and Raffaela Giordano.
Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility
(February 1994)

Christian Helmenstein and Yury Yegorov.
The Dynamics of Migration in the Presence of Chains (June 1994)

Walter Garcia-Fontes and Massimo Motta.
Quality of Professional Services under Price Floors. (June 1994)

Jose M. Bailen.
Basic Research, Product Innovation, and Growth. (September 1994)



89.

90.

91.

92.

93.

94.

9s.

96.

97.

98.

99.

100.

101.

Oriol Amat and John Blake and Julia Clarke.
Bank Financial Analyst’s Response to Lease Capitalization in Spain (September
1994) :

John- Blake and Oriol Amat and Julia Clarke.
Management’s Response to Finance Lease Capitalization in Spain (September
1994)

Antoni Bosch and Shyam Sunder.
Tracking the Invisible Hand: Convergence of Double Auctions to Competitive
Equilibrium. (July 1994)

Sergi Jiménez-Martin,
The Wage Effect of an Indexation Clause: Evidence from Spanish Manufacturing
Firms. (September 1994)

Albert Carreras and Xavier Tafunell.

National Enterprise. Spanish Big Manufacturing Firms (1917-1990), between

State and Market (September 1994)

Ramon Fauli-Oller and Massimo Motta.
Why do Owners let their Managers Pay too much for their Acquisitions? (October
1994)

Marc Sdez Zafra and Jorge V. Pérez-Rodriguez.
Modelos Autorregresivos para la Varianza Condicionada Heterosceddstica
(ARCH) (October 1994)

Daniel Serra and Charles ReVelle.
Competitive Location in Discrete Space (November 1994)

Alfonso Gambardella and Walter Garcfa-Fontes.
Regional Linkages through European Research Funding (October 1994)

Daron Acemoglu and Fabrizio Zilibotti.
Was Prometheus Unbound by Chance? Risk, Diversification and Growth
(November 1994)

Thierry Foucault.
Price Formation and Order Placement Strategies in a Dynamic Order Driven
Market (June 1994)

Ramon Marimon and Fabrizio Zilibotti.
‘Actual’ versus ‘Virtual’ Employment in Europe: Why is there Less Employment
in Spain? (December 1994)

Maria Sdez Marti.
Are Large Windows Efficient? Evolution of Learning Rules in a Bargaining
Model (December 1994)



