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Abstract

We compute efficient accumulation mechanisms for stochastic growth econo-
mies with alternative financial structures. In particular, we compare the behav-
ior of the economy under optimal contracts with: i)self-financing, ii) external
financing with complete markets in the context of full information and full
enforceability, iii) external financing with private information, and iv) external
financing with limited enforcement of debt contracts. Extending the theoretical
model studied in Marimon [1988] we show that when information constraints
are present, there is an efficient transfer mechanism that can easily be comput-
ed using the decision rules of the full-information Pareto problem. We provide
a framework for casting time inconsistent models in a recursive structure that
makes their interpretation and numerical solution easier. To compute our mod-
els we apply and extend the method of “parameterizing expectations” developed
by Marcet [1989]. It is shown that when there is no direct disutility of labor
and risk-averse agents have access to risk-free financial markets, information
constraints only affect consumption patterns and the distribution of wealth.
In contrast, commitment constraints also affect investment patterns and the
growth of the economy. In fact, with commitment constraints the patterns of
growth can be very similar to those of an autarkic economy.
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1 Introduction

Recent and past historical events show that alternative forms of social organiza-
tion (mechanisms) have a crucial effect on the process of economic growth and the
distribution of wealth.

The fact that social forms of organization (degree of competition, definition and
enforcement of property rights, etc.) affect growth and the distribution of wealth is
certainly not a new observation among economists. Adam Smith [1775], for example,
takes this to be the central explanation underlying the divergent patterns of growth
observed in different economies of his time, such as England and Spain. While this
issue has seen a renewed interest among economic historians (e.g. North [1986],
North and Weingast [1987]), it has mostly escaped the recent renewed interest on
growth among economic theorists.

Endogenous growth models capture the effects of some forms of social interaction by
including in the definition of the technology elements such as learning. Nevertheless,
we argue that in order to model the effect on growth of some basic forms of social
organization it is not enough to change the production function. One must include
elements such as the degree of communication and enforcement in the definition of
the environment.

The neoclassical growth model (e.g., Brock and Mirman [1972]), in which a single
agent must solve an intertemporal optimization problem, can be seen as an extreme
form of lack of commitment-communication. All investment must be self-financed
and smoothing of consumption must take the form of self-insurance through the
capital stock, which is the only available asset.

Alternatively, a general equilibrium growth model (e.g., Marimon [1989]) supposes
a perfect commitment-communication technology. Managers can freely borrow and
lend at the market interest rate and idiosyncratic risks can be smoothed out through
pooling. Furthermore, agents never breach their contracts.

Most historical economies show partial forms of insurance and credit markets, and
contractual opportunities might be limited by the scope of an imperfect commit-
ment-communication technology. For example, investors might not be able to mon-
itor all investments and agents might default on their promises. Feasible contracts
(mechanisms) must take these incentive problems into account.

Recently, there have been several mechanism-anthropological studies showing that so
called “primitive economies” have a fairly complex contract structure and through
family and tribal ties they establish long-run relationships which resemble those
predicted by the theory of dynamic mechanisms. In particular, agents can pool
intravillage risks and partially smooth their consumption (intervillage pooling is
usually more problematic. See, Townsend [1989], Udry [1989])

If, as exchange economies, these “primitive” economies can implement exchange al-
locations which are close to the Arrow-Debreu allocations, why don’t we observe
higher growth and/or income levels? Perhaps, implementing Arrow-Debreu invest-




ment allocations is not such an easy task in an environment with incentive con-
straints. But, if this is the case, which incentive constraints have a more severe
impact on growth? Our work is an attempt to answer these questions.

We also expect that the theory developed here will be of some use to address the
old issue of growth and inequality. As is known, according to standard competitive
analysis the distribution of income does not affect the patterns of growth. However,
the empirical evidence seems to be against this neutrality result (see for example,
the recent work of Persson and Tabellini [1991]). Our work shows that, while in a
perfect Arrow-Debreu world there is no relationship between wealth distribution and
growth, in a limited enforcement environment this neutrality result breaks down.

Marimon [1988] studies accumulation mechanisms for stochastic growth economies
with alternative forms of commitment-communication technologies. In particular, he
shows that alternative mechanisms imply different wealth distributions and possibly
accumulation paths. He also shows that, in an economy with limited communication
and enforcement, the loss of efficiency due to incentive constraints can be made
arbitrarily small if the discount factor is close enough to one. In this paper we
further pursue the study of these economies, by characterizing and computing a
sequentially efficient mechanism.

As in Green’s [1987] exchange economy, our growth economy has a continuum of
agents and a technology available to society as a whole that transforms one unit of
consumption good in a given period into é the following period, and vice versa. The
social contract (mechanism) between a (risk-averse) agent and the “society” can be
characterized as a contract between a risk-averse (agent) and a risk-neutral agent,
the latter having possibly negative consumption (transfers). We also assume that
risk-averse agents have no disutility of labor.The production technology under the
control of the risk-averse agent is a fairly standard neoclassical one (i.e., a version of
Brock and Mirman’ technology). By simplifying our model with these assumptions,
we are able to obtain a sharp picture of the effect of different constraints on growth
and wealth.

In the economy with full communication and enforcement, the set of efficient mech-
anisms (contracts), can be parameterized by (), k, ), where A € R, is the weight
given to the risk-averse agent in the corresponding social planner’s problem, k the
initial capital stock, and 6 the observed random shock. As is expected, risk-averse
agents have a constant stream of consumption (which only depends on X and ko)
and, if the initial capital, ko, is low with respect to the steady-state distribution of
capital stocks, then the risk-averse manager borrows heavily in the initial periods in
order to finance high investment levels. In classical capital-theory terminology, we
can say that “the manager speeds up his way to the turnpike”.

We proceed with the study of an economy where investments are not observable and
transfer payments can only depend on past transfers and capital stocks. We follow
Abreu, Pearce and Staccetti [1987] in characterizing a contract as a prescription for
each time-event of an action and a continuation payoff contingent on the observed
consequences (output and capital stock) of the prescribed action. These ex-post




present values can be associated with alternative A values of the social planner’s
problem with full communication. In other words, the agent is rewarded/punished
along each observed history by changing (the present value) of future transfers.
Associated with any of these changes there is a change in the agent’s marginal
utility of income A~1. We call this type of mechanism a A-transfer mechanism and
show that it is a sequentially efficient mechanism.

In the full communication-commitment environment, risk-averse agents have access
to risk-free financial markets. Agents can perfectly smooth their consumption and
investment is independent of the weight, A, given to the representative agent in the
planner’s problem. The A-transfer mechanism for an economy with limited com-
munication and perfect enforcement induces a less smooth pattern of consumption.
Ex-ante homogeneous agents have an ex-post unequal distribution of wealth. Invest-
ment, however, is not affected by the presence of information constraints, and the
process of capital accumulation is the same as in the economy with full information.

Enforcement constraints are very different from these information constraints. We
study the case in which society (or the investor) has full commitment and the system
of property rights establishes that, when the manager breaches the contract, he can
take possession of the existing capital stock, but he will then be prevented from ever
re-entering the social mechanism. That is, the present value of the autarkic solution
given the current capital stock and shock is the current reservation value for the
manager. With these constraints, the set of efficient mechanisms for an economy
with limited enforcement and full information can be parameterized by (A, k, M, 6),
where the state variable M accounts for the past periods in which the participation
constraints have been binding. The participation constraint is a non-standard con-
straint in dynamic programming. Nevertheless, we show how the problem can be
cast in a dynamic programming framework, where the solution is given by a time-
invariant function of the natural state variables and a pseudo-state variable. This
approach of making recursive the characterization of the optimal contract has an
independent interest since it can be applied to other non-recursive problems.

Enforcement constraints (alone) have an important effect on wealth distribution
and growth. Even if agents have access to risk-free financial markets and perfect
information, they cannot perfectly smooth their consumption (which now depends
on (A k, M,0)). Investment is also affected and, therefore, the process of capital ac-
cumulation differs from that of an economy with full enforcement. These analytical
results are reinforced by our simulations showing that with limited enforcement the
possibility of external financing may not be useful for growth when the initial capi-
tal is low. Then, growth will be as low as it would be under autarky and external
financing is only useful for smoothing consumption against unforeseen shocks.

Phelan and Townsend [1988] have computed sequentially efficient mechanisms for
stationary (non-growth) economies. They follow the approach of linearizing the
sequential constraints by means of lotteries over continuation payoffs. With this
approach, they can solve for the efficient mechanism by solving a large number of
linear programming problems. Our approach differs from theirs in that we do not




linearize the problem and, by constructing A-transfer mechanisms, we can limit most
computations to solving maximization problems without information constraints.

In order to compute the nonlinear dynamic stochastic optimization problems em-
bedded in the computation of the efficiency frontiers, we apply the parameterized
expectation approach (PEA) developed by Marcet [1989]. That is, we parameter-
ize the conditional expectation of the optimality conditions with flexible functional
forms, and we iterate on these expectations until they are the best prediction of the
future in the series they generate.

Some features of the application of PEA to this problem are novel. First of all,
because we are interested in the growth path of capital towards the steady state we
do not use long run simulations, as in Marcet [1989], to iterate on the conditional
expectation. Instead, we calculate a different policy function for the growth path by
using many realizations of a few periods. Second, the participation constraints take
the form of inequality constraints that involve conditional expectations and that are
binding in some periods and non-binding in others. To our knowledge this is the
first paper where a dynamic model with this type of constraints is solved.

The rest of the paper is organized as follows. Section 2 presents the model and the
theoretical results; Section 3 describes the computational algorithm in more detail,
and Section 4 presents some numerical results.

2 Alternative Growth Economies

In this section we present the four different models analyzed in this paper. What is
constant in all four cases is the productive technology, the exogenous shocks, and the
utility function of the agents. However, the possibilities for financing will vary form
case to case. First we analyze the autarkic equilibrium with no external financing,
second we study external financing under full information and commitment, third
limited information but full commitment, and fourth full information but limited
commitment. In all cases we analyze the optimal contracts given the constraints
imposed in the type of contracts that are enforceable.

We characterize the social transfer mechanism with a representative risk averse
agent (the manager), in an economy with a continuum of agents, as a transfer
mechanism between a risk-averse and a risk-neutral agent (the investor). Underlying
this construction is the assumption that society as a whole, but not any single agent,
can use a linear technology that transforms § units of consumption next period into
one this period and vice versa.

With full information and enforcement and given an initial capital stock ko, efficient
transfer mechanisms are indexed by A € R and given by solutions to the following




planner’s problem:

maXx (1 ot 6) Eo i&t [Au(ct) + (—Tt)]

t=0
subject to:
ce + 1 — 7 = f(ke) (1)
ke = dke—y + 9(ie-1; 6e, 5¢) (2)

CtZO) itZOa kO::k

Here, u(-) represents the instantaneous utility function of the risk-averse manager,
f(-) the production function, and ¢(-) the function that converts investment goods
into capital goods. The variable ¢; represents consumption of the manager; 7
transfers of the investor or, alternatively, —7; can be interpreted as the consumption
good the risk neutral investor obtains from the contract. We assume that both agents
have the same discount factor. The exogenous stochastic shocks (6, s;) affect the
productivity of investment; where s; is i.i.d., while 6; is first order Markov. Note
that the investment technology is such that at the time the investment decision is
made the value of the shocks is unknown.

The following assumptions are made: 1) the utility function u(-) is strictly concave,
twice differentiable and satisfies the Inada conditions: u/(¢) — + 00 as ¢ — 0,
u'(c) — 0 as ¢ — oo; 1) f is concave and differentiable; iii) the exogenous stochastic
processes (y,s;) are stationary and mutually independent; iv) d € [0,1]; v) g(-;8,s)
is differentiable and concave, with fixed range independent of (8, s); if ¢ > 7, then
the distribution of g(7’;-,-) (second order) stochastically dominates the distribution
of g(i;-,-), and g¢(-; 8, s) satisfies the Inada conditions described in (%), and vi) there
exists 8 > 0 and k such that, for all kK > k, f'(k) < B, and, for alld and i, if
Eg(z;-,-)|0] > (1~ d)k, then 61 > d+ BE[¢'(s;-,-)|6].

The above assumptions are relatively standard in the stochastic growth literature.
The main exception is (v), which is introduced to guarantee that in a private in-
formation environment it is not possible ez-post to detect investment decisions with
probability one from observations on the capital stock and the serially correlated
shock. Assumption (vi) guarantees that present dicounted values are well defined
and, as it can be seen, allows for long-run growth, as in the deterministic convex
model of Jones and Manuelli [1990].

2.1 The environment with self-financing (AU)

The self-financing (autarkic) solution for an economy with lack of communication-
commitment is obtained from the above planner’s problem by having A = 1,7, = 0,
for all t, and solving for an optimal investment process {7;}. In addition to (1) and
(2) the autarkic problem (AU) has the following Euler equation:
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i (6d)™u'(cs4nt1) f' (kt4nt1)] (3)

n=0

u'(c) = 6 Ey

Throughout the paper Q% will represent the derivative of the function g with
respect to its first argument; notice that this derivative depends on future values
of the stochastic shocks. Using standard arguments one can show the existence of
a time-invariant policy function 1*(k, ), and the corresponding consumption policy
function c*(k, 8).

2.2 The environment with full information and full enforcement (PO)

When both agents observe all shocks and contracts are perfectly enforceable, the
optimal contracts are Pareto Optimal allocations.They can be found as solutions to
the planner’s problem described at the beginning of this section. In addition to (1)
and (2), the (interior) first order conditions are:

1=46E, 3;:1+t1 2(5d)"f'(k:+n+1) (4)
w'(c) = A1 (5)

It follows that the stationary policy functions (i*
the form c*(k,A,0) = ¢()) and *(k, A, 0) = 1
(k, A, 9).

The risk-averse agent is fully insured and accumulation paths {k:(ko)} are inde-

pendent of the relative weights in the planner’s problem. Of special interest is the
solution for A\*(ko), where A\*(ko) is the only value A € R, satisfying

(k, ), 8), c*(k, A, 0), 7(k, ), 8)) take
(k,8). Only transfers depend on

Eo Z 6tT‘(A‘(ko), kg, 0g)) =0
t=0

That is, A*(ko) is the (inverse of) the marginal utility of expenditure in the com-
petitive equilibrium with initial capital stock kg. The existence and uniqueness of
A*(ko) can easily be easily derived from our assumptions.

2.3  The environment with limited communication and full enforcement

(P1)

We now consider the case in which investment/consumption decisions cannot be
observed by outsiders. Contracts can only be contingent on observable variables




such as the history of capital stocks and transfers. A few definitions are in order
(We use the notation k* = (ko,...,k:))

Def: A transfer mechanism I' = {i;, ¢}, with observable information z* = (k*, ¢, 6*)
is said to be Sequentially Incentive Compatible if for every time-event (,z%):

‘Ul(t, Zt) = (1 - 6)7!‘(1::,7';,]0;) + 6E(,'hzt)’l)1(t +1, ZH-I)
> (1 — 6)7!'(.1:, ’Tt,kt) + 6E(;’z¢)‘l)1(t +1, z¢+1)

Where v;(t, z*) is the expected present value of utility to agent one (the risk-averse)
at time-event (t,z%) of the transfer mechanism T, and

7(i,7,k) = maz.{u(c) : c < f(k) + 7 — 1}

Def: A Sequentially Efficient Mechanismis a (resource- feasible) Sequentially Incen-
tive Compatible mechanism that is not Pareto dominated by any other (resource-
feasible) Sequentially Incentive Compatible mechanism.

Now we define a transfer mechanism, called A-transfer mechanism, and show that
it is a Sequentially Efficient Mechanism. A dynamic mechanism or contract ez-
ante defines contingent actions (i,7) as functions of all past observed information.
Following Abreu, Pearce and Staccetti [1987] we can simplify the characterization of
the dynamic mechanism by using the Bellman decomposition. That is, in order to
satisty the Sequential Incentive Compatibility constraints for agent one, it is enough
that at every time-event (t,z') and value v;(t, z*) the T mechanism recommends a
pair of current actions (¢,7) and conditional continuation payoffs v;(t + 1, 2%, ky11),
satisfying the corresponding incentive compatibility inequalities. For example, if the
state variables are (k,6)!, then the above inequality simplifies to a state-inequality:

‘Ul(k, 0) = (1 - 6)7!'(1:,7', k) + 6E(i'k'9)‘l)1(k/, 0/)
> (1~ 8)m(i, 7, k) + §Ez gyv1(kr,0r)

The M-transfer mechanism

The A-transfer mechanims is a T mechanims that uses as state variables (k, X, 8)
where A~1 is the marginal utility of expenditure at a particular time-event The )-
transfer mechanism exploits the downward sloping property of the Pareto frontier
in the full information and full enforcement (PO) problem. More specifically, with a
downward slopping Pareto frontier, if v;(k, 8; A) is the present value assigned to agent
iin state (k, 8) when agent one has weight A, then there is a function A(-; k, 8) defined
by vi(k,8; \(z;k,60) = z. In our problem, that the risk neutral agent bears all the

! Transfers r are also observable but, since in our environments transfers are fully enforced (there
are no possible deviations from 1), we can simplify our presentation by not including this variable
explicitely in the set of state variables.




fluctuations, v1(k,6; A) = u(c(A)). We simplify notation by letting Vi(A) = u(c(A)).
In the PO problem, A is constant. In contrast, in the A-transfer mechanism A changes
in order to guarantee the incentive constraints.

The A mechanism is recursively constructed as follows. If the current stateis (k, A, §),
then the recommended current actions are i(k, 8) and 7(k, A, ), the efficient actions
of the PO problem with A. The particular law of motion for A will be given by a func-
tion h(.). We will choose this function in such a way that the expected discounted
utility for the manager, denoted W, will be W(k, A,8) = V1()) and the continuation
payoffs will be given by W(k', X', 8') = V1()’), where ' = h(k, k', ),6,6"). That is,
the central element of the A-transfer mechanism is the map h(.), which defines how
the present value of the contract changes with the evolution of the state. We now
define h(.).

Let 92(k, k', X, 6,60") = va(K', 0'; \)— E(i(k,0),k,0)v2(K’, 6'; X) That is, 92(-) is agent two’s
deviation from the conditional expected value; conditional on the current state and
the optimal investment level.

Now, M = h(k, k', X,0,68") = V7 H(Vi(X) + A~ Liy(k, K, A, 6, 6%)).

In other words, if the current state is (k, A,6) - now including A - and, after the
recommendation to follow the optimal action, the observed state is (k’,68') then
agent one should suffer (gain) a deviation from Vi()) of A~1.4,(k, k', A, 8,6"). That
is, agent one is punished/rewarded with the deviation of agent two’s utility in the
PO problem, properly weighted by A.

Proposition. The A-transfer mechanism is a Sequentially Efficient Mechanism for
an economy with limited communication and full enforcement.

Proof. The mechanism is resource feasible since it defines a sequence of feasible
actions (from the corresponding PO problems). We now show that it satisfies the
incentive compatibility constraints. That is,

W(k, ), 0)=(1-8)x(i(k,8),7(k,A,0),k)+ (6)
8 E(igey.0)W (k' h(k, k', 1, 6,67, 6")
> (1= 8 (i, 7(k, A, 8),k) + 8Eq WK k(X k,K',6,6"),6)
By construction, (6) is simply:
Vi(d) > (1 - 8)x (i, 7(k, ), 0),k) + (7)
6E(;,k,9)[V1(A) + A_lf)z(k, k’, A, 0, 0’)]

or

Vi(A) > (1 = 8)x(3, 7(k, X\, 8), k) + 6v:1(X) + (8)
ATVE 4 oy [v2(K' 05 0) = E((k0),k,0)v2(K', 6" X))




This can be rearranged (using the fact that vy(k’,8'; A) = V1(A)) to obtain:

(1 = 6)n(i(k, 8), 7(k, A, 8), k) +

6 E ik ap ko (K, 85 W] + [(1 — 8)(=r(k, 2, 0))+
S E(i(k,0),k0)v2(K', 0'; X)

> M1 - 8)x(3,7(k, ), 0),k) + SE;xgyv1(K, 6] (9)
+H{(1 = 6)(—7(k, A, 0) + 6E g 4 gyua(K', 6'2)

This last inequality is just the optimality constraint of the full information and
enforcement (PO) problem with weight A at the state (k,8), and by optimality of
i(k, @) the inequality is satisfied.

The above argument, however, not only shows that the A-transfer mechanism is
sequentially-incentive compatible, but almost demonstrates its efficiency.

By Lemma II in Marimon (1988) there exists a Sequentially Efficient Mechanism.
Suppose the Sequentially Incentive Compatible mechanism I'* Pareto dominates the
A-transfer mechanism. Let (v}, v;) be the present values attained through I'* (for
a given state (ko,8). Let A = V; !(v}) and use the initial conditions (ko,8;)) to
define the A-transfer mechanism. That is, agent one has the same present value in
both mechanisms.

Therefore, Pareto dominance requires that v, > va(ko, 8; A). However, by the above
derivation of (9) we attain a contradiction with the Pareto optimality of the solution
to the full information and enforcement (PO) problem with weight A and at the state

(ko, 6).

Since in this context (with a risk-neutral agent and no disutility for labor) optimal
investment plans for the full communication-commitment economy are independent
of A (i.e.,i*(k, A, 8) = i(k,8)), and since the A-transfer mechanism is defined in terms
of alternative solutions to the full communication-commitment problem, it follows
that capital accumulation paths are not affected by private information incentive
constraints.

2.4 The Environment with Full Information and Limited Enforcement

(PC).

Now we assume that there is a failure in the commitment technology of this economy
and that at any point in time the manager can take possession of the capital stock
and switch to the autarkic solution. In this environment, the contracts that can
be enforced are those where the utility the manager derives from the contract is,
at each point in time, at least as high as the utility from autarky, given the state




variables of the period; this means that the manager will have to be compensated
80 as to make his utility high enough at every period.

Optimal allocations can be found by maximizing a planner’s problem giving differ-
ent weights to each agent, subject to participation constraints on agent 1. These
constraints ensure that agent one’s welfare in every period is at least as large as the
welfare he would obtain from the autarkic solution. We call this the PC model. For
a given A > 0, an optimal contract in the PC economy can be found by solving

Program 1

maz{ch.,.h,-hh}zo(l — 6)E02 6‘[A'U.(Ct) - Tt]

t=0
subject to:ci— T+ 1 = f(ke) (10)
kt+1 = dkt + g(it, 0t+1, 8t+1) a'n,d (11)
(1= 6)ED 6 u(cess)] > V2 (ke, bt) (12)

1=0

for all t, where V* is the value function under autarky. Equations (10)and (11) are
the technology constraints, and equation (12) is the participation constraint that
makes the utility of the first agent in every period at least as large as the utility he
would obtain from switching to an autarkic regime from time t onwards.

The participation constraints can be interpreted as a restriction placed on the con-
sumption set of the agent. In the language of Arrow-Debreu modelling, this restric-
tion can be interpreted as a survival set; clearly, it is a convex survival set, so that
the usual proof of the first and second welfare theorems would hold, and we know
that the planner’s problem can be decentralized as a competitive equilibrium with
transfers and complete markets.?

The dynamic programming characterization of Program 1 is not trivial, and our
treatment is of independent interest to study problems with expectational con-
straints. To realize the special features of Program 1 let us recall that a standard
dynamic program has the following form:

Program 2

m“-”’{n}::oEo Z 6t7‘(3’t, Ty 1,S¢)

t=0

st. e < T(ze1,8:) (13)

2See Kehoe and Levine [1990] for a careful treatment of these issues in 2 model with participation
constraints but no capital growth
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(see, for example, Stokey and Lucas with Prescott [1989] ) where z; is a vector
of finite length, s; a stochastic shock and the functions r and I' are known and
independent of the choice for z;. Unfortunately, the participation constraint (12) is
not

a special case of (13): even though the conditional expectation in the left side of the
participation constraint is a function of past state variables, this function depends
on the whole stochastic process {c;}{2, 3. In other words, the function I should not
depend on the choice of the endogenous variables, but the conditional expectation
in equation (12) does.

Now we will rewritte the model in such a way that we can still use recursive tech-
niques by introducing constraints involving the Lagrange multipliers. This will be
useful in order to characterize the form of the solution and to find the state variables
of the problem. We derive some properties of the solution analytically, and we argue
that the solution is time inconsistent. A very similar approach can be used to deal
with many problems in which conditional expectations appear in the constraints
and the solution is time inconsistent*

A Dynamic Program for the Problem with Participation Constraints
The solution to Program 1 is the usual saddle point of the following Lagrangean:

Program 3

L=Ey) 6{u(e)) — met

t=0

Wl B> Su(cens)] — VE(ke 8/ (1 - 6)]}

1=0

subject to the technology constraints (1) - (2) and

e 20

where p; is the Lagrange multiplier of the participation constraint at time t. Using
standard arguments, one can show that the solution to this problem is the solution
to Program 1.

Letting

t
M, = Z Ht—j
7=0

3Note that it si not a problem if past consumptions are an argument of this function. The problem
here is that the function itself is affected by the whole stochastic process for c;

*See Rojas [1991] for an application to optimal taxation.
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the first order conditions of the above Lagrangean are

g—ft = §(A + M)u'(ce)— 1] =0 (14)

g_ﬁ = 5t[“1 — 6 E¢[ve41 3;::1]] =0 (15)

oo = #[7'k) - dBdnl + 3 - e (-8 =0 (16)
g = FIBLY Fuleuss)] - V(b 00 /(1= 6) 2 0 (a7)
Wl By Pu(ecas)) - V(ke, 0/(1 - )] = 0 (18)

and the technology constraints (1)and (2). In equations (14)to (18),, represents
the Lagrange multiplier of constraint (2).

It is convenient to write this problem in the form of a dynamic program like Program
2 (Note that Program 3 has conditional expectations in the return function so that
it in not of the form of program 2.).

With this in mind, we arrive at

Program 4

L=(1- 5)Eoi (X + My_1)u(ce) — T+

pelulee) — Vo (ke, 6:)/(1 - 6)1}

subject to (1), (2), pe >0,

Mg = M¢_1 + pe and M_.1 = 0. (19)

Here, we have rewritten the objective function in Problem 3 by rearranging and using
the law of iterated expectations to eliminate the symbols E; . We have introduced
the law of motion for M; as contraint (19).

Notice that both the return function and the constraints here are of the form of
standard dynamic programs like Program 2 where the feasible set at t is a known
function of the past, and using standard arguments we can show that the optimal
decision for the control variables at time t is a time-invariant function of the state
variables (k¢, M;_1,60;). From this characterization of the solution we see that the
variables (k¢, 6;), which would be the 'natural’ state variables for the problem, are not
a sufficient statistic for all past information, and that the conditional expectations
in the Euler equations depend on all past Lagrange multipliers of the participation

12




constraints. These multipliers are appropriately summarized in M;_;. Program 4
has the unusual feature of having Lagrange multipliers in a constraint.®

Equation (19) can be viewed as a constraint that the planner imposes on himself
in order to follow the optimal path. Given that only k; and 8, enter in the return
function and in the constraints at time t of the original Program 1, it would be
physically possible for the planner to re-set M;_; = 0 at any point in time. From
the point of view of the planner, it would be optimal to do that if he wants to
reoptimize at time t; however, the optimal path set at the initial period calls for
a scrupulous observation of (19), and resetting M, at a later date is suboptimal.
This is another version of the time-inconsistency problem of Kydland and Prescott
[1977].

In general, the decision function in time inconsistent problems changes at every
period, so that these problems are sometimes very difficult to solve; we have cir-
cumvented this problem by introducing a pseudo-state variable that makes the op-
timal allocations a time-invariant function of a few variables. The approach we use
here could applied to be many other problems; the general idea is to introduce the
constraints with conditional expectations in the objective function, cancel out the
signs E, rearrange the objective function and put an initial condition on the state
variables that depend on the Lagrange multipliers until the problem is recursive
with lagrange multipliers as state variables. In appendix 2 we show how to apply a
similar technique in models with more complicated restrictions.

The variable M, is an accumulation of past multipliers; roughly speaking, if the
participation constraint has very often been binding in the recent past, then M, will
be high. The role of M, in Program 4 is to shift the weight A given to agent 1 in
the objective function of the planner; when the participation constraint is binding,
the optimal path calls for augmenting the weight given to agent 1 in the planner’s
instantaneous objective function; this increase in the weight is maintained for all
future periods and consumption is higher in all future periods. Therefore, whenever
(12) is binding, the planner compensates agent 1 by increasing his consumption to a
certain level and leaving consumption at this level until the participation constraint
binds again (at which time consumption will increase again).

Kydland and Prescott [1980] also showed how some time inconsistent models could
be placed in a recursive framework in a problem of optimal taxation. They also had
past Lagrange multipliers determining future decisions, and they used the expression
'pseudo-state variable’ to denote these Lagrange multipliers. Unlike in our case,
though, their Lagrange multiplier was the one in the budget restriction of the agent
(u'(c¢)) and their problem was only recursive after the initial period . In models
with uncertainty their approach seems to lose some recursive properties and it is not
clear how it would apply to a restriction on the value function as in the PC model.

Characterization of Equilibrium in the PC model

BSee Chari and Kehoe [1990] for a similar use of these multipliers.
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. . . ow
In this sub-section we parameterize the function that converts investment into n
capital goods as:

g(1t, et1, sep1) = a(0i41 + g1 )it/ (1 + ) + bser

Consumption of agent 1 satisfies

'U.’(Ct) = 1/(A + Mt), (20)
so that ¢; depends only on (A + M¢). On the ot%ler hand, the law of m;tlzlxll foirf J\v:.’f;
(equation (19) ) guarantees that this state variable can only grow. 1tn ty{_/ L
assume that the shocks have bounded support, t1.1e.re exists a finite cons .a.n <
that V > V°(ke,0¢) with probability one. Combining all these observations we
that M, and ¢, will grow until M, reaches a level such that

u(e) > V5 (21)

this inequality means that the utility of keeping consumption constant for the whole
future is higher than the upper bound on autarkic utility. After M, reaches this level,

consumption will not change, since the participation constraint will never be binding
again and M; will be constant from then on.

We can now study the behavior of investment. With the above functional form for
g, the first order conditions (15) and (16) reduce to

(14 1¢)? = 8E¢[(Be41 + se41)a Z(éd)jaka-—jl-i—ll - (22)
1=0
B (s + se41)a Y6 e e 2 /(1 - 6)
el fe+1 + Se41 % t+541 TN

Also, we recall that the Euler equation for the case with full enforcement and full
information is exactly like (22) without the second conditional expectation that
depends on future pu's. This tells us that investment is lower in periods when the
participation constraint is likely to be binding in the near future; in this case, the
second expectation in equation (22) has a high absolute value, and the left hand
side must go down. Therefore, in order to know how low investment will be in this

period we must determine under what conditions the participation constraint will
be binding.

There are effects that determine how often the participation constraint will be bind-
ing and each works in opposite directions. First, it is clear that the lower (A M,_y),
the lower current consumption of agent 1 is, and the more likely it is that the par-
ticipation constraint will be binding in the near future. On the other hand if capital

is high, the value of autarky is high, so that it is more likely that the constraint will
be binding.
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We have seen that when M; reaches a high enough level the participation constraint
will never again be binding. Therefore, when this happens, the second expectation
in the right side of (22) vanishes and investment will always be equal to the level of
optimal investment with full enforcement. In the initial periods, however, when the
constraints are binding and M, is growing, we still do not know what the behavior
of investment will be. To determine this we will resort to simulations of the model
in section 4.

3 An Algorithm for Solving the Growth Model with Incen-
tive Constraints

We will explain here how to obtain numerical solutions for the different models
specified in the previous section. There are four models that we want to solve:
autarky equilibrium (AU), Pareto Optimal with full communication and full en-
forcement (PO), the model with participation constraints (PC) and under private
information, with incentive compatibility constraints (PI).

We use the following functional forms:

f(ke) = k¢

9(ie, 0e41, St41) = @(Bet1 + se41)ie/(1 4 it) + bse
u(e)) = /(v +1)
log 0! = plog gt—l + &
where ¢; is i.i.d. Marimon (1989) discussed how the function g makes it impossible

for the investor to infer the level of investment from the capital stock series, thereby
making the private information problem interesting.

3.1 Solving the autarkic equilibrium

The AU has the following first order conditions:

dg > : e
¢! = 6Ey| 6‘51 S (8dye], okl (23)
j=0
¢t + 1 = ki (24)
key1 = dke + g(%e, 0e1, Se41) (25)

To solve this model numerically we use the parameterized expectation approach
(PEA). Since there is only one expectation to approximate, the model can be solved
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quite easily. We substitute the expectation in the right side of (23) by a param-
eterized function of the state variables ¥(8, k¢, 6;). We choose 9 in a flexible way
50 as to approximate the conditional expectation arbitrarily well. In particular, we
choose

P(B, k¢, 0:) = ezp( Pu(log(k:),log(6:))

for a given n, here P, is a polynomial of degree n. The parameters 3 are the
coefficients in the polynomial. We can, in principle, increase the degree of the
polynomial until we have a reasonable approximation to the conditional expectation.
This functional form is convenient because it is strictly positive, as is the expression
inside the conditional expectation that it intends to predict.

We want to find the parameter 35 with the following property: if agents use G5 in
order to form the expectations of the Euler equation, then (08¢, k¢, 0;) is the best
predictor among functions ¥(., k¢, 6;).

The mechanics for finding B are the following:

-Step 1 - fix 8. Substitute the conditional expectation in (23) by % to obtain:

cf(B) = 69(B, ke(8), be)- (26)

-Step 2 - obtain a long series of the endogenous variables that solves (24), (25) and
(26)® for this particular §; call this series {c¢(B),1:(8), k+(0)}

-Step 3 - for this series calculate the expressions inside the conditional expectation
of (23)7 and perform a non-linear regression of these variables on (., ki(8), 6;); let
S(0) be the result of this regression.

-Step 4 - finally, use an iterative scheme to find the fixed point of S, and set 8y =
S(Bs) °
The solution for consumption, investment and capital is given by {c:(8¢), 1:(B¢), k:(B¢)}-

3.2 Solving for first periods with a low initial capital

The scheme just described can, in principle, approximate the true equilibrium arbi-
trarily well in the steady state distribution. However, if the economy starts at a very
low capital stock ko, the B¢ from long run simulations may not be a good approx-
imation for the first few periods, as the capital stock grows from ko to the steady

®Note that this is quite simple: c.(4) can be solved directly from (26), 1(4) from (24) and
k¢+1(ﬁ) from (25)

"Note how the sums E;Zl(éd)jc,’+jak;’+'jl can be calculated very efliciently using backward

11

recursion.

8For more detailed description of this approach see Marcet [1989]. For details on the implemen-
tation of the algorithm in a simple growth model see den Haan and Marcet [1990].




state distribution. For example, in the first few periods marginal productivity of
capital is very high and the long run simulations will not take this into account.
This could be a problem for our paper because we are particularly interested in
analyzing growth of the economy in the initial periods.

To avoid this problem we find a different policy function (a different Gf) for the
initial periods by running many realizations of a given (short) length T, starting
each realization at kg instead of running a long realizationb of the process. Step 2
is modified as follows:

Step 2b - Obtain a large number N of (independent) realizations of length T, that
solve (24), (25) and (26); each initial capital is fixed at kg °.

To obtain arbitrary accuracy in S(3), we let N — oo. Here, T is selected to be long
enough for the economy to get in the range of the steady state distribution. In our
model, and for the parameters we selected, T = 50 was appropriate.

Then we proceed with Step 3 and 4 as before.

One final modification is needed. In the conditional expectation we find discounted
sums of future variables, like

Z(éd)iakﬁihl CZ+-'+1 ;
1=0

these are used in the non-linear regression of Step 4. Since for t + ¢« > T the model
is close to the steady state distributions, we could run simulations of length T + T",
where T" is large so that the truncated sum is close to the infinite sum, and the k.4,
for whitch ¢ + ¢ > T are calculated with the steady state 8y . This is not a good
solution, however, because it requires long simulations, as T’ may have to be quite
large.

Instead, we note that for ¢ < T, the expectation in the right side of (23) can be
rewritten as

) x©
Eq %‘—‘[[E(ad)ﬂcj+jakg+—jl]+
t j=o

o o]
T-t+1 ; -1
(6d) “ ET+1[Z(éd)]c%+1+jak?'+1+j”)
=0
The expectation conditional on information at T + 1 involves only variables at the
steady state distribution, so we can parameterize it as a polynomial function of the
state variables, and find the parameters in this polynomial by running (only one)
regression, with a long simulation at the steady state §;.

So, the variable predicted in the regression of Step 3 for these periods is

° A similar approach was used by Marshall [1988].
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69t+1

[[Z (6dY el jpr kil + (8d)T 9% (B, kr i1, 0141)]

where 1)** is the result of the non linear regression described in the previous para-
graph.

3.3 Solving the Pareto optimal equilibrium with full communication and
full enforcement (PO)

The first order conditions are:

6.qt+1 a
1=6E( 5. > (6dY akyT ] (27)
=0
¢ + 'l:t - Tt = k? (28)
kep1 = dke 4 g(5e, 0e41, Se41) (29)
AC? =1 (30)

where A is given.

This way of writing the first order condition is not conveniente when we try to
apply PEA to this model. The reason is that in Step 2 we could not solve for all the
variables in Step 2; because equation (27) does not help in solving for any variable.

This is a common situation in PEA and it can be solved by rewriting the first order
conditions in a way that we can solve for the endogenous variables. In this model,
noting that

09t+1 _ (Oeg1 + Se41)
= - a,
ait (1 + 1“)2

we rewrite (27) as

(1 + lt) = 6Eg[(1 0t+1 + Se4+1 Z 6d Jakf'+11+1 (31)

Now we can use (31) to find investment, (30) for consumption, (28) for 7; etc.

As in the autarkic equilibrium we have to calculate the solution in the first periods
of growth, using the same approach as in section 3.2.




3.4 Solving the Problem with Full Information and Limited Enforcemen-

t.(PC)

Now we discuss how to solve the model described in section 2.4 numerically with
PEA, where agent 1 (the manager) is guaranteed at least as much utility as in the
autarkic equilibrium in every period, and where both agents observe all the shocks.
This model is harder to solve than the previous ones because of the presence of
inequality constraints that are binding in some periods and non-binding in others.
Further, we now have one additional expectation to parameterize and the additional
state variable M,.

From our discussion of section 2.4 we see that the following equations have to be
satisfied:

ce — Te +1¢ = f(ke) (32)
keyr = dke + g(ie, Oe41, Se41) (33)
Ht ‘U,(Ct) + Et[z Jju(ct+j)] - Va(kt, 0:)/(1 - 5) = 0, (34)
1=1
w'(ce) = 1/(A+ pe + Me-1) (35)
M= M+ pe (36)
(141e)* = 6E{(Be41 + seqa)a y_(8d)[aki - (37)
1=0
Ht4j+1 _6‘41”1 3
T Bkey i
With these equations we can solve the model following steps 1 to 4 in page ... ; only

step 2 which involves solving for the endogenous series is now more cumbersome.

After parameterizing the conditional expectations in equations (34) and (35) the
above system provides six equations to solve for (c¢, 7¢, kt, i, pie, M¢) . To solve for
¢t and pu; we proceed as follows: first try the case where the participation constraint
(12) is non-binding, so that g = 0 and ¢, is given by equation (35). For this
solution, we check the participation constraint is satisfied; if it is, we can go on
and solve for the remaining variables; otherwise we know that y; > 0 , so that
the large bracket in (34) is equal to zero, which provides an equation to solve for
consumption; then we can find p; from (35). It can be shown that p; will be positive
by construction.

In this model the steady state distribution for investment is the same as in the PO
problem with full enforcement, so the only interesting part to solve is in the first few
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periods as the capital stock and M; grow to their steady state distributions. Then
the scheme we use for the initial periods described in section becomes 3.2 crucial.

Finally, we note that the expression inside the conditional expectation of (37)
involves the derivative of V. Because the productivity of investment is not known
at the time investment is realized, the usual formula for the derivative of the value
function does not apply (see Lucas and Stokey [1989] for this formula). In appendix
1 we find an expression for this derivative that is easy to compute.

3.5 Solving the model with incentive compatibility constraints (Pl)

In Section 2.3 we saw that in order to find the equilibrium with the incentive com-
patible contract at a given period, for a given value of the contract, we have to
find the point in the Pareto Optimal frontier that gives the same value for the full
information full enforcement model, then the manager takes the same decision as
he would take at that point in the PO frontier, and the continuation payoffs are
calculated using the value functions of both agents at that point of the PO frontier.
Hence, we need to have the decision functions and value functions readily available
at all points on the PO frontier.

We first solve the PO problem for 1000 lambdas between zero and one. At each
lambda, we calculate the By that corresponds to the expectation involved in the
Euler equation and the f; involved in the conditional expectation of the value
function to calculate

Da(ke, ke, Ay Oty 0e41) = va(keqa, A, 0i41) — Ed[va(kesn, A, 041))

This is then used to calculate the continuation payoffs with the following formula

W(kt+11 A¢+1: 0t+1) = W(kh Ah gt) + (l/At)ﬁz(kh kH'l) Ah gh 0H—1

After W is formed, we search again for the point in the PO frontier where vy (A¢41) =
W(kes1, Ae+1,0e41), use this to find transfers and investment and we go on to the
next period.

4 Characterization of Equilibria and Simulation Results

In this section we characterize de behavior of the four models. We use mainly
simulations that are plotted in Figures 1 to 12 at the end of the paper; also, the
main results are summarized in Table 1. Those features of the models that we could
characterize analytically were described in section 2 and we will often refer to them.
The series plotted in Figures 1 to 12 correspond to simulations using one particular
realization of the exogenous shocks for all series.
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The values of the parameters used in the simulations are the following
marginal productivity of capital a = .5

risk aversion parameter of the manager v = —3

discount factor § = .95

autocorrelation parameter of log(6;) = .95

standard deviation of innovation of log(6;) = .03

standard deviation of s = .03

mean of s = .2

undepreciated proportion of capital d = .9

constant in investment function a = .6

Given the choice of d and 6, one period can be interpreted as one year. Most values
of the parameters are within the usual range that is used in neoclassical growth
models, with the exception of the standard deviations of the variances, which are
higher than usual. We chose as initial capital kg = 1, in order to obtain growth
rates of around 3 or 4% for the first fifteen periods, which seems reasonable for
developping countries.

With our numerical results, we are interested not only in illustrating the behavior
of the model, but also in detecting the magnitude of the impact on growth and
utility of alternative communication and commitment environments. We also want
to distinguish the impact on growth from the impact on steady state distributions.
More details on how the calculations were performed and on the algorithms are
given in Appendix 3.

In Figures 1 to 12, the last two letters identify the environment, so ’-au’ denotes au-
tarky equilibrium, ’-po’ Pareto optimal allocation with full information and perfect
enforcement, ’-pc’ participation constraints and ’-pi’ private information, while the
first few letters identify the series that is being plotted. For example, ’kpo’ denotes
capital in the Pareto Optimal allocation, 'clpc’ consumption of agent 1 (the man-
ager) in the model with participation constraints and so on. For these figures, we
plot the first 50 periods as representative of the initial periods, and periods 200 to
400 as representative of the steady state distribution.

4.1 Autarky versus Full Information Full Commitment

We first compare the PO environment with an autarkic environment (AU). We
already argued that consumption of the manager is constant in the PO equilibrium,
while the investor absorbs all the shocks. Therefore, we do not plot consumptions for
the PO equilibrium since their solution is trivial and completely determined by the
weight the planner gives to the manager (A). Also, recall that capital accumulation
is unaffected by the weight A.
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When the initial capital stock is low relative to the steady state distribution, in an
economy with external financing the manager can borrow heavily at the beginning
to enhance his investments and attain faster growth tha he would have attained in
an autarkic environment (see Figures 1 and 3). However, the mean of the steady
state distribution of capital and investment (see Figures 2 and 4) is not significantly
different between the two environments, although the need to use capital as the only
asset for self-insurance under autarky implies that the steady state distribution
has a slightly higher mean in an autarkic regime. Also, we see that investment
is more volatile in the Pareto Optimal case; this then is, an example where an
increase in volatility of investment is not undesirable. Figure 1 indicates that the
availability of external financing has a very significant effect on growth, if there is
perfect information and enforcement.

Consumption for the manager is constant in the full information - enforcement
environment. In contrast, in an autarkic environment with low initial capital stock,

consumption grows with the capital stock and fluctuates in response to random
shocks.

4.2 Private information with full enforcement (Pl) vs. autarky (AU)
and vs. full information with full enforcement (PO)

We showed in Section 2 that, in our model, the A-transfer mechanism preserves the
investment decisions of the full information-enforcement environment when invest-
ment decisions are observable. Therefore, capital accumulation paths for the PI
coincide with the PO-paths of Figures 1-4. Figures 5 to 8 compare the behavior of
consumption and utility of the manager (respectively cl- and vall- ) under autarky
and under private information.

Consumption is affected by the presence of (information) incentive constraints, al-
though the manager can smooth his consumption much more than in an autarkic
environment and, therefore, attain higher payoff (Figures 5-8). Also, it is interesting
to note that, even though the manager starts out with a very high utility, in the
long run he can be worse off under private information than under autarky.

4.3 Limited enforcement with full information (PC) vs. autarky (AU)
and vs. full enforcement with full information (PO)

In section 2 we proved that, in the steady state distribution, the capital and invest-
ment series under participation constraints were equal to the capital accumulation
in the PO model and that consumption of agent 1 was constant; thereby, transfers
absorbed all the shocks. In other words, under participation constraints it is only
interesting to study the series numerically for the initial periods. We are reporting
the series that correspond to a A that makes expected discounted transfers at t = 0
to be equal to zero, so these series correspond to the equilibrium contract.
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In the PC environment the path of capital accumulation (and investment) in the
first few periods is very similar to the autarky equilibrium (see Figure 1). This is
remarkable since we saw that private information did not have any effect on growth.
In fact, in a given realization, the capital stock can even be lower with participation
constraints for certain periods (see Figure 1) ; then, it is possible for the utility of
the manager to be lower under participation constraints than in autarky in certain
periods (see periods 10 to 25 in Figure 9). Notice that this does not mean that the
participation constraints are violated in these periods: since capital can be smaller
under participation constraints, the value for agent 1 of moving to autarky after a
few periods is lower than if he had started out in autarky.

In the model with partial enforcement, even though borrowing from the investor
does not help in growing at a faster rate, it does help the manager smooth out
consumption against unforeseen shocks. Figure 10 shows how consumption of the
manager grows much more smoothly under participation constraints than under
autarky, even though the consumption levels are similar at any point in time. So,
in the PO model, borrowing and lending was used for smoothing along the growth
path and against unforeseen shocks, but in the PC model it only serves the latter
purpose.

The fact that in this model external financing can be used to smooth out unforeseen
shocks consumption makes it possible to have a small gain in utility with respect
to autarky; the gain is equivalent to an increase in consumption of 0.1% in the first
period and leaving consumption constant thereafter. Cleary, with a more risk averse
utility function or increasing the randomness in the economy, it would be possible
to increase the utility gain in the PC model relative to the AU model.

Figure 11 tells us that transfers are negligible (of the order of 1% the level of total
consumption). Recall from section 2.4 that whenever the participation constraint
is binding it causes M; to go up, so that Figure 12 tells us that the participation
constraint is binding in most periods while capital is growing.
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Conclusion

In this paper we demonstrate that different communication commitment technolo-
gies have large and very different effects on growth. The results indicate that limited
enforcement makes the possibility of borrowing for growth useless, although borrow-
ing is still useful in order to smooth consumption against unforeseen shocks. On
the other hand, limited information permits growth levels as high as with perfect
information.

This suggests that these commitment and communication breakdowns can provide
a theory for explaining different growth patterns. In this paper, we refer to growth
from a low initial condition for capital to the steady state distribution.

The use of simulations is crucial in obtaining several of our results and it is one
example of how simulations can be used for obtaining results that are in essence
theoretical. The simulations illustrate the behavior of the economy, allow us to make
quantitative statements, and enrich the analysis. For example, the fact that growth
under limited enforcement is as slow as under autarky could only be discovered
through simulation.

Other technical contributions of the paper are in implementing the PEA solution
procedure for a model with expectations in the constraint, implementing the A —
transfer mechanism to solve models with private information and finding a recursive
framework in a time inconsistent model.
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Appendix 1
Computing the Derivative of the Value Function in Autarky

In order to apply PEA to the model with participation constraints we need to
calculate the values inside the conditional expectations of equation (22), so we
need to calculate the derivative of V¢. It is convenient to express this derivative in
terms only of conditional expectations and functions of variables of the model; we
now derive such a formula based on the ideas of Benveniste & Scheinkman. In the
rest of this appendix, all variables correspond to the autarky equilibrium so that
the superscript ’a’ on the variables is suppressed.

The Bellman equation for the autarkic problem is
Va(kg, 0,) = {%na.x}(l — 6)1L(C¢) + 6E3Va(dkt + g(‘l:g, e¢+1), 0t+l)}

Ct ,ic]

subject to the production constraint. The first order conditions of the maximization
problem in the right hand side of the Bellman equation

w(ct) = SEV (kesr, O41)

9gi+1

— 38

(e, (38)
where the primes denote derivatives with respect to the first argument of each func-
tion involved in this expression.

Letting f(k:,6:) be the optimal decision function for investment under autarky, we
have the following identity

Va(kg,eg) = (1 - 6)11.[]9;1 - f(kg, eg)]+
S E;V°®(dky + g(f(ke, 0t)), 6t41, Se41]-
Differentiating both sides with respect to capital we have
V® (ke, 6e) = (1 — 8)u'(ce)[ak?™? — f'(ke,8,)] + S E¢
[V (keg1, 0e41)[d + 941 (ie) £ (R, 60)]).
Using (38) this reduces to

V¥ (ke 6;) = (1 = 6)u'(cr)ak® ! + adEy[Ve(kess,0i41)],

and, by recursive substitution we have

[+ 2]
Ve(ke,0:) = (1= 6)ED_(8d)Y v (cesr)aki ],
3=0
which is the formula that we are seeking. Note that we can approximate this deriva-
tive by parameterizing the conditional expectation as a polynomial, and that we
can obtain an approximation to this derivative by running one non-linear regression
after solving the model with autarky 1° .

1% Another approach would have been the following two-step procedure: first approximate the value
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Appendix 2

In forming Program 4 we have used some special features of the model at hand.
Similar ideas could be applied to a number of different models where expectations
appear in the restrictions in different ways. For example, if the expectations enter
in a non-linear way, so that (3) is replaced by

GEY . 6*u(cesi)], ke, 5¢] > 0 (39)
1=0
for a known function ¢, then it is not posible to rearrange the objective function of
Program 3 in a direct way in order to obtain Program 4. In this case, one should
write

max Fg Z 6‘[Au(ct) — 7o + ped[Uy, ke, 54]] (40)
t=0
subject to technology constraints, p¢ > 0 and

U = E‘[i 8 u(cets)) (41)

Then, (41) can be put in the Lagrangian as we did with equation (3) above and
the accumulation of the multipliers of equation (41) will play the role of M;.

Another possibility is that a given restriction involves conditional expectations in t
and t-1, for example, for a given a, we could have the constraint

Et[i 8 u(cess)]

> aEea[) | 6'u(ce-144)] (42)
1=0
then, if we tried to go from Program 3 to Program 4 directly we could not apply
the law of iterated expectations and eliminate the symbol E;_;. Nevertheless, we
can rewrite this as

Uy > all;_y (43)
U, = E{Y. (e (44)

and proceed as before.

function as a conditional expectation of future discounted utilities, and then take the derivative of
this approximated value function. The second step here is problematic: if we use a polynomial to
approximate the value function there is no reason to believe that the derivative of the polynomial
will be close to the derivative of the value function. This procedure would be justified only if we
used cubic or quadratic splines to approximate the value function.
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TABLE 1

Mean of Growth Utility of the

Mean of Capital

Increase in

Model Rate of Output Manager in Steady State Consumption
Autarky 2.88% -7.72 2.57
PO 3.90% -7.16 2.53 3.84%
PC 2.91% -7.66 2.53 0.39%
PI 3.90% -7.20 2.53 3.55%

Note:”Mean of the growth rate...” refers to the mean during the first fifteen periods across
independent realizations. The utility of the manager is measured at time zero and using
many independent replications of the model, conditioning on kg = 1 but drawing the initial
shock 6y from the steady state distribution. The "Increase in consumption” refers to the
permanent increase in consumption that would equal the present value achieved in the

autarkic environment with the present values achieved in the other environments.
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